京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从经验思维到实证思维的转变
比起“大数据”,我更喜欢“数据科学”的提法,这是因为:第一,在今后的分享中,我会更偏向于从技术层面探讨如何利用数据优化管理决策;第二,数据量的大小固然重要,然而数据能否提升管理水平,更取决于管理者能否从经验思维转变为科学思维,或者更确切地说,转变为实证思维。所以我想在这管理学家的领地上多谈谈科学。

中国人多以经验思维为主,其特点是判断多而论证少。即便有论证,也是基于逻辑的辩证多,基于数据的实证少。只要留意一下每天的新闻,就会发现经验思维的例子比比皆是。拿一条新闻 “北京中秋前进入最堵一周” 来说,媒体的普遍判断是中秋前堵车是因为人们节前纷纷跑到北京去送礼。这一判断符合我们的经验,似乎也符合逻辑,但是却恰恰缺乏实证。若从实证的角度验证这一判断,我们要回答以下两个问题:为什么说这是最堵的一周?如何证明这最堵的一周是由人们从外地到北京送礼造成的?
要从实证的角度来回答第一个问题,首先要确定“堵”的衡量方式,比如说是以平均车速,或者平均车流量;“平均”又是在哪些时段上,哪些地区内,针对哪些车型(是否包括公交车)。然后,我们需要足够多年份的每周“堵车”数据来支持我们的说法。最后,我们还需要收集尽可能多的控制变量数据,譬如每年中秋与国庆的间隔天数、天气状况、重要会议及活动、道路施工情况、北京的拥车情况、街道面积、高速里程、地铁线路演变等等,因为这些因素都有可能影响堵车并影响我们对“中秋前是最堵一周”的证明。
可见,要从数据科学的角度很好地回答第一个问题并不容易,而要实证地回答第二个问题就更困难了。我们需要知道:每周有多少外地车辆进北京?是否中秋前的一周外地车最多?这些外地车辆是不是来送礼的?来送礼的外地车辆都在什么时间,什么地点出现?当他们出现时,是否直接观测到了拥堵?如果没有直接观测到来送礼的外地车辆造成了拥堵,是否是本地车辆为了避开这些来送礼的外地车造成了其他时间,其他地点的拥堵?
从实证的角度做了这番思考,我们会发现,一个凭经验得出的判断竟然如此难以证明。其实,如果我们尝试用数据科学的方法论来审视一下我们在管理中所做的判断,我们同样会吃惊于很多判断极度缺乏实证依据。而这种将经验思维转变为实证思维所带来的阵痛与震撼,却是我们通向数据科学时代,通向数据驱动的管理决策必经的关键一步。
这种从经验思维到实证思维的转变,不仅是管理观念的转变,还会带来操作层面和技术层面上的转变。从对“北京中秋前进入最堵一周”的实证思考,我们实际上也对哪些数据会有用,哪些数据需要进一步收集,数据分析中哪些因素需要得到控制等等,有了更清晰的认识。并且,在对收集到的数据进一步做实证分析的过程中,我们的原有认识有可能会被颠覆,从而成为展开新一轮实证思考和数据收集的起点。比如说,通过对各主要路口的监控视频进行分析,我们可能并没有发现外来车辆的增加,但是却发现本地公车牌照的出现频率比往常要高。如果有这样的发现,我们对拥堵成因的判断就要修正,进一步的数据收集重点也会随之转到公车使用上了。
尤为重要的是,从经验思维到实证思维的转变,还能帮助我们找到更为高效和低成本的解决方案。还是拿堵车作为例子,基于经验思维的判断,往往会导致兴师动众、社会成本很高的解决方案,譬如限制外来车辆入京。而基于数据和实证分析的解决方案可能会是提高某些时段,某些区域内的停车费用;或是调节相应时段区域内的左转和右转限制及红绿灯的间隔等。相比之下,这样做的成本要小很多。
一直在用堵车说事,这看似只是政府公共管理的范畴,但其实解决堵车问题对企业的运营和营销也会有影响。中秋节大家都要吃月饼,而这些年来,哈根达斯冰淇淋月饼已经成为一线城市中月饼的新宠儿。在促进哈根达斯月饼成功的因素中,其团队运用实证思维来解决堵车问题也功不可没。一开始,团队选在离高速公路出口很近的地点建立临时月饼领取点。从经验思维的角度,这似乎很有道理,因为方便了消费者。但是团队很快发现这样做导致了交通阻塞,不仅降低了顾客的满意度,也招来了政府交通部门的抱怨。之后其团队从实证思维的角度,通过对顾客流量的时间空间分布的分析,优化了领取点的设置、产品配送和领取流程。顾客的体验和忠诚度自然也提升了。
令人高兴的是,实证思维和基于数据的管理决策观念正慢慢地深入人心。大家可能注意到临近中秋时,不少网友吐槽“五仁月饼”难吃,并将其炒成了一个热门话题。然而媒体朋友们并非人云亦云,而是通过问卷调查、销量统计的方法为“五仁月饼”正了名。据9月18日《新京报》报道,消费者对五仁月饼评价排名第二,销量良好,甚至部分店铺都脱销了。媒体需要这样的实证思维,企业管理者也需要这样的实证思维。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11