京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从经验思维到实证思维的转变
比起“大数据”,我更喜欢“数据科学”的提法,这是因为:第一,在今后的分享中,我会更偏向于从技术层面探讨如何利用数据优化管理决策;第二,数据量的大小固然重要,然而数据能否提升管理水平,更取决于管理者能否从经验思维转变为科学思维,或者更确切地说,转变为实证思维。所以我想在这管理学家的领地上多谈谈科学。

中国人多以经验思维为主,其特点是判断多而论证少。即便有论证,也是基于逻辑的辩证多,基于数据的实证少。只要留意一下每天的新闻,就会发现经验思维的例子比比皆是。拿一条新闻 “北京中秋前进入最堵一周” 来说,媒体的普遍判断是中秋前堵车是因为人们节前纷纷跑到北京去送礼。这一判断符合我们的经验,似乎也符合逻辑,但是却恰恰缺乏实证。若从实证的角度验证这一判断,我们要回答以下两个问题:为什么说这是最堵的一周?如何证明这最堵的一周是由人们从外地到北京送礼造成的?
要从实证的角度来回答第一个问题,首先要确定“堵”的衡量方式,比如说是以平均车速,或者平均车流量;“平均”又是在哪些时段上,哪些地区内,针对哪些车型(是否包括公交车)。然后,我们需要足够多年份的每周“堵车”数据来支持我们的说法。最后,我们还需要收集尽可能多的控制变量数据,譬如每年中秋与国庆的间隔天数、天气状况、重要会议及活动、道路施工情况、北京的拥车情况、街道面积、高速里程、地铁线路演变等等,因为这些因素都有可能影响堵车并影响我们对“中秋前是最堵一周”的证明。
可见,要从数据科学的角度很好地回答第一个问题并不容易,而要实证地回答第二个问题就更困难了。我们需要知道:每周有多少外地车辆进北京?是否中秋前的一周外地车最多?这些外地车辆是不是来送礼的?来送礼的外地车辆都在什么时间,什么地点出现?当他们出现时,是否直接观测到了拥堵?如果没有直接观测到来送礼的外地车辆造成了拥堵,是否是本地车辆为了避开这些来送礼的外地车造成了其他时间,其他地点的拥堵?
从实证的角度做了这番思考,我们会发现,一个凭经验得出的判断竟然如此难以证明。其实,如果我们尝试用数据科学的方法论来审视一下我们在管理中所做的判断,我们同样会吃惊于很多判断极度缺乏实证依据。而这种将经验思维转变为实证思维所带来的阵痛与震撼,却是我们通向数据科学时代,通向数据驱动的管理决策必经的关键一步。
这种从经验思维到实证思维的转变,不仅是管理观念的转变,还会带来操作层面和技术层面上的转变。从对“北京中秋前进入最堵一周”的实证思考,我们实际上也对哪些数据会有用,哪些数据需要进一步收集,数据分析中哪些因素需要得到控制等等,有了更清晰的认识。并且,在对收集到的数据进一步做实证分析的过程中,我们的原有认识有可能会被颠覆,从而成为展开新一轮实证思考和数据收集的起点。比如说,通过对各主要路口的监控视频进行分析,我们可能并没有发现外来车辆的增加,但是却发现本地公车牌照的出现频率比往常要高。如果有这样的发现,我们对拥堵成因的判断就要修正,进一步的数据收集重点也会随之转到公车使用上了。
尤为重要的是,从经验思维到实证思维的转变,还能帮助我们找到更为高效和低成本的解决方案。还是拿堵车作为例子,基于经验思维的判断,往往会导致兴师动众、社会成本很高的解决方案,譬如限制外来车辆入京。而基于数据和实证分析的解决方案可能会是提高某些时段,某些区域内的停车费用;或是调节相应时段区域内的左转和右转限制及红绿灯的间隔等。相比之下,这样做的成本要小很多。
一直在用堵车说事,这看似只是政府公共管理的范畴,但其实解决堵车问题对企业的运营和营销也会有影响。中秋节大家都要吃月饼,而这些年来,哈根达斯冰淇淋月饼已经成为一线城市中月饼的新宠儿。在促进哈根达斯月饼成功的因素中,其团队运用实证思维来解决堵车问题也功不可没。一开始,团队选在离高速公路出口很近的地点建立临时月饼领取点。从经验思维的角度,这似乎很有道理,因为方便了消费者。但是团队很快发现这样做导致了交通阻塞,不仅降低了顾客的满意度,也招来了政府交通部门的抱怨。之后其团队从实证思维的角度,通过对顾客流量的时间空间分布的分析,优化了领取点的设置、产品配送和领取流程。顾客的体验和忠诚度自然也提升了。
令人高兴的是,实证思维和基于数据的管理决策观念正慢慢地深入人心。大家可能注意到临近中秋时,不少网友吐槽“五仁月饼”难吃,并将其炒成了一个热门话题。然而媒体朋友们并非人云亦云,而是通过问卷调查、销量统计的方法为“五仁月饼”正了名。据9月18日《新京报》报道,消费者对五仁月饼评价排名第二,销量良好,甚至部分店铺都脱销了。媒体需要这样的实证思维,企业管理者也需要这样的实证思维。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10