京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据营销要学会做减法
在大数据时代的背景下,营销战事实上很接近于小说、影视中的“穿越”题材,从“未来”回到现在,也就是说借助于大数据,从顾客的真实交易行为数据中,计算出不同顾客的下次购买时间、购买方向、关注重点,进行针对性的计算。
营销为什么可以被颠覆?营销作为一门专门被提出、研究的学科,不过百余年的历史,却走过了之前三个阶段。第一个阶段,也就是所谓的1.0时代,即供需完全脱节,企业无法获知消费者的需求,能否成功只能靠运气;第二个阶段(2.0时代),企业开始致力于专业的差异化,开始从整体上分析把握市场、客户的需求;第三个阶段(3.0阶段),社会责任传播、品牌管理被引入营销体系,企业更多地根据部分特定的消费群体拟定产品和营销策略。
很多企业对于营销的理解,迄今仍然停留在以上所述的第二个或第三个阶段。当然,相比第一个阶段,基于差异化的营销、品牌营销、社会责任营销,都意味着营销的科学化,可以非常有效地帮助企业避开危机、迎来挑战。
尽管如此,也要看到,营销的科学化仅仅是部分的、相对的,总体上,怎么做营销,经验多流于感性化,预估、预判很难上升为真正意义上的预测。大数据时代的到来,为营销从主要靠“猜”和“蒙”,转型为精准研究及应用创造了条件。大数据依托海量的实时和历史数据,运用强大的数据分析,挖掘消费者个人化需求以及潜在需求,找出产品预测,找到精准目标顾客,进行一对一营销,甚至还可以精算出成交转换率。
营销被颠覆及超越,随之而来是更高水准的新营销。在过去,实体的百货零售业,营销战从早打到晚,在品牌大战、促销大战之前,商家和品牌商需要筹备很长时间,但究竟能够换得什么样的效果,营销人员很难做到心中有数。
而在大数据时代的背景下,营销战事实上很接近于小说、影视中的“穿越”题材,从“未来”回到现在,也就是说借助于大数据,从顾客的真实交易行为数据中,计算出不同顾客的下次购买时间、购买方向、关注重点(品牌、价格、折扣、不同品类商品的组合),进行针对性的计算。大数据让人变得更聪明,营销者可以掌握更多、更为真实和实时的数据,但这并不意味着思考的难度就下降了——相反,一些营销者过去依靠不对称的信息优势、关系优势获得的成功,而今随着信息的海量化和非壁垒化(透明化)、社交网络的发展而受到挑战,营销者需要根据更多信息在更短的时间内完成更多决策。
这也意味着,大数据营销的真正挑战,其实在于如何做对决策。功典(亚洲大数据决策营销的领导品牌)首席执行官、香港海归创业家陈杰豪所著的《颠覆营销》一书,不仅是一本旨在颠覆传统营销观念和方法的作品,而且还努力纠正因为大数据流行而在企业家阶层中普遍形成的“大数据万能论”等错误认知。作者指出,大数据的应用原则其实不难掌握,难就难在如何诠释数据:诠释依赖人的观察、对核心know-how的理解与经验法则。
经验在大数据时代依然显得十分重要,构成解读数据、确定数据功效的基础。我们所说的营销4.0,既要求达成大数据基础上的精益思考,又要求实时化决策,这必然需要启动降维减法思考。书中为此提出了一个获利公式,营收等于有效顾客数、顾客活跃度、客单价的相乘,这其中涉及到新增率、变动率、流失率、转化率、活跃度、瞌睡顾客唤醒率、半睡顾客唤醒率、新顾客客单价、主力顾客客单价。
作者有关大数据需要做减法的观点,对于中国企业界及创客群体具有重点意义。大数据不意味着要利用所有可以掌握和挖掘的数据,而应当分清重要数据和干扰变项,有目标和策略地搜集必要的关键数据,依循既定的商业逻辑。
相比传统的营销4P理论(产品product、价格price、渠道place、促销promotion),大数据下的营销4P,则由消费者、成效、步骤、预测(均为P开头的英文单词)组成。围绕这四个节点,再确立出相应的模型及指标,增强对变动性、异质性销售过程的把握能力。这种转变,很好地适应了大数据时代的产销模式,即变“先产后销”为“有销才有产”,供需关系紧密连接,几乎不存在成本浪费和库存,靠“猜”的营销也因此变成了超精准营销。
本书作者指出,以消费者为中心的新营销模式,要抓住每个消费者不同的生活情境,根据位置信息、搜索记录、线下购买行为,不断提高对消费者品牌印象、购买意图的认识。为了达成这方面目标,要精准把握关键数据,要从顾客姓名、联系地址等背景档案信息,交易数据等动态数据,与交易商品相关的价格、口碑数据等商品特性数据中找出关键点。
要驾驭大数据营销,企业仍需摆脱好高骛远的心态和不切实际的目标,首先致力于做好基础工作,比如内部部门的数据称谓统一、工作流程及其运行逻辑的统一,构建基于企业利益最大化的共同愿景,推动数据整合计划。书作者结合多个行业企业的数字化转型经验,就不同行业、规模、数字化起点的企业启动大数据营销特别是关键数据挖掘分析能力,提供了具体可行的建议。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16