
大数据营销要学会做减法
在大数据时代的背景下,营销战事实上很接近于小说、影视中的“穿越”题材,从“未来”回到现在,也就是说借助于大数据,从顾客的真实交易行为数据中,计算出不同顾客的下次购买时间、购买方向、关注重点,进行针对性的计算。
营销为什么可以被颠覆?营销作为一门专门被提出、研究的学科,不过百余年的历史,却走过了之前三个阶段。第一个阶段,也就是所谓的1.0时代,即供需完全脱节,企业无法获知消费者的需求,能否成功只能靠运气;第二个阶段(2.0时代),企业开始致力于专业的差异化,开始从整体上分析把握市场、客户的需求;第三个阶段(3.0阶段),社会责任传播、品牌管理被引入营销体系,企业更多地根据部分特定的消费群体拟定产品和营销策略。
很多企业对于营销的理解,迄今仍然停留在以上所述的第二个或第三个阶段。当然,相比第一个阶段,基于差异化的营销、品牌营销、社会责任营销,都意味着营销的科学化,可以非常有效地帮助企业避开危机、迎来挑战。
尽管如此,也要看到,营销的科学化仅仅是部分的、相对的,总体上,怎么做营销,经验多流于感性化,预估、预判很难上升为真正意义上的预测。大数据时代的到来,为营销从主要靠“猜”和“蒙”,转型为精准研究及应用创造了条件。大数据依托海量的实时和历史数据,运用强大的数据分析,挖掘消费者个人化需求以及潜在需求,找出产品预测,找到精准目标顾客,进行一对一营销,甚至还可以精算出成交转换率。
营销被颠覆及超越,随之而来是更高水准的新营销。在过去,实体的百货零售业,营销战从早打到晚,在品牌大战、促销大战之前,商家和品牌商需要筹备很长时间,但究竟能够换得什么样的效果,营销人员很难做到心中有数。
而在大数据时代的背景下,营销战事实上很接近于小说、影视中的“穿越”题材,从“未来”回到现在,也就是说借助于大数据,从顾客的真实交易行为数据中,计算出不同顾客的下次购买时间、购买方向、关注重点(品牌、价格、折扣、不同品类商品的组合),进行针对性的计算。大数据让人变得更聪明,营销者可以掌握更多、更为真实和实时的数据,但这并不意味着思考的难度就下降了——相反,一些营销者过去依靠不对称的信息优势、关系优势获得的成功,而今随着信息的海量化和非壁垒化(透明化)、社交网络的发展而受到挑战,营销者需要根据更多信息在更短的时间内完成更多决策。
这也意味着,大数据营销的真正挑战,其实在于如何做对决策。功典(亚洲大数据决策营销的领导品牌)首席执行官、香港海归创业家陈杰豪所著的《颠覆营销》一书,不仅是一本旨在颠覆传统营销观念和方法的作品,而且还努力纠正因为大数据流行而在企业家阶层中普遍形成的“大数据万能论”等错误认知。作者指出,大数据的应用原则其实不难掌握,难就难在如何诠释数据:诠释依赖人的观察、对核心know-how的理解与经验法则。
经验在大数据时代依然显得十分重要,构成解读数据、确定数据功效的基础。我们所说的营销4.0,既要求达成大数据基础上的精益思考,又要求实时化决策,这必然需要启动降维减法思考。书中为此提出了一个获利公式,营收等于有效顾客数、顾客活跃度、客单价的相乘,这其中涉及到新增率、变动率、流失率、转化率、活跃度、瞌睡顾客唤醒率、半睡顾客唤醒率、新顾客客单价、主力顾客客单价。
作者有关大数据需要做减法的观点,对于中国企业界及创客群体具有重点意义。大数据不意味着要利用所有可以掌握和挖掘的数据,而应当分清重要数据和干扰变项,有目标和策略地搜集必要的关键数据,依循既定的商业逻辑。
相比传统的营销4P理论(产品product、价格price、渠道place、促销promotion),大数据下的营销4P,则由消费者、成效、步骤、预测(均为P开头的英文单词)组成。围绕这四个节点,再确立出相应的模型及指标,增强对变动性、异质性销售过程的把握能力。这种转变,很好地适应了大数据时代的产销模式,即变“先产后销”为“有销才有产”,供需关系紧密连接,几乎不存在成本浪费和库存,靠“猜”的营销也因此变成了超精准营销。
本书作者指出,以消费者为中心的新营销模式,要抓住每个消费者不同的生活情境,根据位置信息、搜索记录、线下购买行为,不断提高对消费者品牌印象、购买意图的认识。为了达成这方面目标,要精准把握关键数据,要从顾客姓名、联系地址等背景档案信息,交易数据等动态数据,与交易商品相关的价格、口碑数据等商品特性数据中找出关键点。
要驾驭大数据营销,企业仍需摆脱好高骛远的心态和不切实际的目标,首先致力于做好基础工作,比如内部部门的数据称谓统一、工作流程及其运行逻辑的统一,构建基于企业利益最大化的共同愿景,推动数据整合计划。书作者结合多个行业企业的数字化转型经验,就不同行业、规模、数字化起点的企业启动大数据营销特别是关键数据挖掘分析能力,提供了具体可行的建议。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29