
大数据营销要学会做减法
在大数据时代的背景下,营销战事实上很接近于小说、影视中的“穿越”题材,从“未来”回到现在,也就是说借助于大数据,从顾客的真实交易行为数据中,计算出不同顾客的下次购买时间、购买方向、关注重点,进行针对性的计算。
营销为什么可以被颠覆?营销作为一门专门被提出、研究的学科,不过百余年的历史,却走过了之前三个阶段。第一个阶段,也就是所谓的1.0时代,即供需完全脱节,企业无法获知消费者的需求,能否成功只能靠运气;第二个阶段(2.0时代),企业开始致力于专业的差异化,开始从整体上分析把握市场、客户的需求;第三个阶段(3.0阶段),社会责任传播、品牌管理被引入营销体系,企业更多地根据部分特定的消费群体拟定产品和营销策略。
很多企业对于营销的理解,迄今仍然停留在以上所述的第二个或第三个阶段。当然,相比第一个阶段,基于差异化的营销、品牌营销、社会责任营销,都意味着营销的科学化,可以非常有效地帮助企业避开危机、迎来挑战。
尽管如此,也要看到,营销的科学化仅仅是部分的、相对的,总体上,怎么做营销,经验多流于感性化,预估、预判很难上升为真正意义上的预测。大数据时代的到来,为营销从主要靠“猜”和“蒙”,转型为精准研究及应用创造了条件。大数据依托海量的实时和历史数据,运用强大的数据分析,挖掘消费者个人化需求以及潜在需求,找出产品预测,找到精准目标顾客,进行一对一营销,甚至还可以精算出成交转换率。
营销被颠覆及超越,随之而来是更高水准的新营销。在过去,实体的百货零售业,营销战从早打到晚,在品牌大战、促销大战之前,商家和品牌商需要筹备很长时间,但究竟能够换得什么样的效果,营销人员很难做到心中有数。
而在大数据时代的背景下,营销战事实上很接近于小说、影视中的“穿越”题材,从“未来”回到现在,也就是说借助于大数据,从顾客的真实交易行为数据中,计算出不同顾客的下次购买时间、购买方向、关注重点(品牌、价格、折扣、不同品类商品的组合),进行针对性的计算。大数据让人变得更聪明,营销者可以掌握更多、更为真实和实时的数据,但这并不意味着思考的难度就下降了——相反,一些营销者过去依靠不对称的信息优势、关系优势获得的成功,而今随着信息的海量化和非壁垒化(透明化)、社交网络的发展而受到挑战,营销者需要根据更多信息在更短的时间内完成更多决策。
这也意味着,大数据营销的真正挑战,其实在于如何做对决策。功典(亚洲大数据决策营销的领导品牌)首席执行官、香港海归创业家陈杰豪所著的《颠覆营销》一书,不仅是一本旨在颠覆传统营销观念和方法的作品,而且还努力纠正因为大数据流行而在企业家阶层中普遍形成的“大数据万能论”等错误认知。作者指出,大数据的应用原则其实不难掌握,难就难在如何诠释数据:诠释依赖人的观察、对核心know-how的理解与经验法则。
经验在大数据时代依然显得十分重要,构成解读数据、确定数据功效的基础。我们所说的营销4.0,既要求达成大数据基础上的精益思考,又要求实时化决策,这必然需要启动降维减法思考。书中为此提出了一个获利公式,营收等于有效顾客数、顾客活跃度、客单价的相乘,这其中涉及到新增率、变动率、流失率、转化率、活跃度、瞌睡顾客唤醒率、半睡顾客唤醒率、新顾客客单价、主力顾客客单价。
作者有关大数据需要做减法的观点,对于中国企业界及创客群体具有重点意义。大数据不意味着要利用所有可以掌握和挖掘的数据,而应当分清重要数据和干扰变项,有目标和策略地搜集必要的关键数据,依循既定的商业逻辑。
相比传统的营销4P理论(产品product、价格price、渠道place、促销promotion),大数据下的营销4P,则由消费者、成效、步骤、预测(均为P开头的英文单词)组成。围绕这四个节点,再确立出相应的模型及指标,增强对变动性、异质性销售过程的把握能力。这种转变,很好地适应了大数据时代的产销模式,即变“先产后销”为“有销才有产”,供需关系紧密连接,几乎不存在成本浪费和库存,靠“猜”的营销也因此变成了超精准营销。
本书作者指出,以消费者为中心的新营销模式,要抓住每个消费者不同的生活情境,根据位置信息、搜索记录、线下购买行为,不断提高对消费者品牌印象、购买意图的认识。为了达成这方面目标,要精准把握关键数据,要从顾客姓名、联系地址等背景档案信息,交易数据等动态数据,与交易商品相关的价格、口碑数据等商品特性数据中找出关键点。
要驾驭大数据营销,企业仍需摆脱好高骛远的心态和不切实际的目标,首先致力于做好基础工作,比如内部部门的数据称谓统一、工作流程及其运行逻辑的统一,构建基于企业利益最大化的共同愿景,推动数据整合计划。书作者结合多个行业企业的数字化转型经验,就不同行业、规模、数字化起点的企业启动大数据营销特别是关键数据挖掘分析能力,提供了具体可行的建议。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18