京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用SPSS做数据分析?先弄懂SPSS的基础知识吧
1、SPSS数据分析的流程

2、SPSS特性:
易用性强
操作界面极为友好,操作简单
良好的帮助系统和自学功能
为高级用户提高编程功能
功能强大
成熟的统计过程
完美的图形处理功能
提供多种数据准备技术
兼容性好
数据输入:Excel,Lotus,Oracle,SQL Server,Acess,dBASE,文本
数据输出:Word,HTML,XML,Excel,Powerpoint,PDF.
3、数据的编辑
常量
数值型常量:除了普通写法外还可以用科学计数法,如:1.3E18;
字符型常量:用单引号或双引号括起来如果字符中包含单引号,则必须使用双引号;
日期常量:日期个数的数据,一般需要使用日期函数进行转换;
变量
变量名长度不能超过8;
三种基本的类型:数值、字符和日期;
可以在variable view界面设定变量的长度及小数位、变量的描述、变量值的描述、missing值、显示宽度、对齐方式和变量的测度方式;
变量的测试方式
Scale:定距变量,如:身高、体重等;
Ordinal:定序变量,如:教育程度、级别等;
Nominal:定类变量,如:性别、民族等;
操作符与表达式
三种基本的运算:数学、关系和逻辑
数学运算符:+ – * / ** ()
关系运算符:> >= < <= = ~=
逻辑运算符:&(AND) |(OR) ~(NOT)
三种运算对应三种表达式
常用的数据操作命令
Data->Sort Cases
Transform->Rank Cases
Transform->Count
Transform->Recode
Transform->Automatic Recode
Transform->Compute
Data->Transpose
Data->Split Files
Data->Merge Files
Compute
数值型:compute num1=value.
字符型:String A(a11).compute a=’hello world’.
日期型:compute data1=date.mdy(month,day, year).
Rocode
recode variable name(old value=new value).
recode variable name(old value=new value) into new variable name.
字符型变量使用auto recode
Split file
有的时候需要对变量做些分组的分析,但一些分析方法并不提供分组变量的设置选项这就需要用到Split file命令;
例如使用 Descriptives 做描述性分析,如果想分年龄做分析,这样就可以用年龄变量做为分组变量;
可以看到这里的Split其实是分组,而不是拆分文件;
analyze all case分析所有的样本,不产生分组;
compare groups产生对比分析组;
output by groups分组输入分析结果;
Merge File
add cases 合并变量相同,但是case不同的文件;
add variables合并变量不同,case相同的文件这里的变量不同可以是部分的变量不同,case相同也可以是一个文件的case是另外一个文件的子集;
数据的分类汇总
使用Aggregate命令
指定分类变量对观测量进行分组,对每组观测量的各变量求描述统计量;
检查重复的数据
使用identify duplicate cases
数据的加权
使用weight case
选取一定的case进行分析
使用select cases:在对数据的子集进行分析的时候需要用到这个命令;
常用的数学函
取绝对值:abs(数字型表达式)
求余数函数:mod(数字型表达式,模数),模数不能为0该函数在需要对某一变量求模数的余数时使用,如果对一个顺序编号或自然数序列求模数的余数,可将该序列按模数等距分类,从而实行等距抽样;
四舍五入函数:rnd(数字型表达式)
开方函数:sqrt(数字型表达式)
四、基本的统计分析
SPSS统计分析概述:
针对不同类型的数据选取不同的分析方法,正确的分析方法是得到正确结果的关键;
spss提供数字分析和图形分析两种分析形式;
高级分析之前一般都需要做描述性统计分析,把握数据的规律对分析解释数据有很好的引导和帮助作用;
Descriptive Statistics
– Frequencies:频数分析
– Descriptives:描述统计
– Explore:探索分析
– Crosstabs:列联表分析
– Ratio:比率分析
Descriptives
– 可以对变量进行标准化;
Explore
– Explore是对连续性变量进行探索性分析最有效的工具;
– 考察数据的奇异性和分布特征;
– 箱盒图、茎叶图、正态检验图及方差齐次性检验;
Crosstabs
– 数据类型要求为分类变量;
– 二维或多维交叉频数表(列联表),分析事物(变量)之间的相互影响和关系;
– 可以做卡方检验,来分析行列变量之间是否存在相关性;
分类变量统计描述常用指标
– 统计量:
• 频数、频率、累计频数、累计频率、众数
• 比:任意两个变量之比
性别比,货物/销售人员比
构成比:部分占总体的比例
• 率:事件的发生强度
– 图形:
• 条图、饼图
Spss操作
– 单个变量的分析
• Analyze…Descriptive Statistics…Frequcencies
– 多个变量的分析
• Analyze…Descriptive Statistics…Crosstabs
– 条图
• Graph…(interactive…)bar
– 饼图
• Graph…(interactive…)pie
连续变量的描述指标
– 频数表Frequency
• 直观的方法:分布类型分布特征
– 集中趋势Central tendency
• 均数mean 中位数median 众数mode
– 离散趋势Dispersion tendency
• 全距Range
• 方差Variance 标准差std.deviation
如何计算各个描述统计量
– Analyze->Descriptive Statistics->Frequcencies…
– Analyze->Descriptive Statistics->Descriptives…
– Analyze->compare means->means…
• 如何用图形描述连续变量
– Graph…Interactive…Histogram
• 如何应用Explore对连续变量进行探索性分析
– Analyze->Descriptive Statistics->Explore…
Basic Tables过程:对分类/定量资料进行各种复杂格式的描述;
• General Tables过程:在同一张表格内同时对分类资料、连续资料和多选题数据进行汇总功能非常强大,但使用上相对复杂;CDA 数据分析师培训
• Custom Tables过程:含有表格预览窗口,并可在制表过程中控制结果;
• Multiple Response Sets/Tables过程:专门为多选题数据设计的制表过程;
• Tables of Frequencies过程:在同一张表格中对多个分类变量同时输出频数表;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21