
小数据大用场:银行大数据挖掘的五个切入点
随着“大数据时代”的来临,数据分析对于银行的重要性已成为业界的共识。关于银行大数据如何获取以及如何使用的讨论层出不穷,然而,说到具体应用又另当别论了。“大数据分析”也意味着高成本的投入,与其踌躇于是否要花费巨资来做到面面俱到,我们建议不妨先从一些投入/产出比高的“小数据”分析入手。
大数据实际是从多如繁星的信息中抽取出对客户需求、态度和行为的洞见,从而帮助制定高度聚焦的精准销售和市场营销活动。这样的做法其实并不新鲜,早些年市场营销人员就已经开始借助对已有数据的分析来支撑营销项目。
如今的不同之处在于:由于信息收集、储存和分析技术的发展和处理能力的提升,可供使用的数据和种类都已呈几何式增长。毫无疑问,这些新的信息技术为获得更为深入而复杂的客户行为数据、制定更为精准的商业战略、财务与风险管理等提供了极大的可能性。
大数据项目同时意味着大量的成本投入和风险。例如,大数据项目需要大量的资金和人力投入,而这样的投入往往超出大部分银行的可接受范围。此外,这类项目的有效性主要取决于对前期假设的验证,从而确立算法来建立预测模型。然而,这些数据模型中常常会出现偶然和不同数据类型的差异性,会导致后续验证工作异常困难。
然而,如此面面俱到的分析任务并不一定能够提供给管理层足够的洞见,来足以制定改善业务绩效的措施。因此,我们建议银行将有限的资源投入在更为可控、且投入/产出比更高的数据分析维度上,这样反而会产生更多直观的收益和可衡量的结果。
更好的分析结果对利润和发展而言非常重要。关键在于如何选择简单而又有力的分析方法,为银行的主要发展与管理指标(财务表现、客户、市场信息与机会、运营效率和服务渠道的优化),来提取更有实际意义和可操作性强的信息。
这些类型的分析并不需要复杂的公式、新奇的技术,也不需要IT资源过多的投入。另外,这些数据能够与第三方机构已经做的行业标杆数据和市场地域信息等数据进行对比。我们建议银行可先从以下这五个方面的“小数据”分析开始:
1. 财务报表。
许多银行高管会使用财务数据来与同行进行比较,从而为个人业务战略与投资方向设定更高水平的业务与贡献度指标。然而,这样的比较必须不限于高水平的绩效指标,例如股本回报或净利润收入。为了让数据分析更为有效,还需要包括其他驱动因素,例如:存款组合与增长、赚取的资产及运营效率等指标。另外,还需要与一组高绩效银行的数据进行单独比较,并对所选高绩效银行的成功案例进行收集从而更为全面而深入地了解其业务策略,市场聚焦点和运营环境等成功要素。
2. 客户
客户是银行最有价值的资产,大部分银行不论是对个人银行客户还是公司银行客户关系系统中都已有非常多的可供分析的数据,例如产品渗透率、余额情况、服务渠道的活跃度、利率和风险偏好等。
这其中的最大挑战在于要将数据形成相应的模型,从而帮助识别客户获取、交叉销售和客户保留的机会,进而用于制定市场营销抓手、销售策略以及客户关系管理相关的其他决策。在这些客户经营指标方面,第三方机构已有相应的行业标杆数据,银行可通过将本行数据与行业标杆数据比对之后,能够确定更为切实可行的绩效改进目标和学习对象。
3. 市场
银行的战略方向和业绩水平很大程度上受制于:其所服务的市场大小、规模及其构成以及市场活力的影响。因此,建立一份有关服务市场的档案信息非常必要,银行能够从中制定竞争策略、识别市场增长潜力并设定工作的优先级。
理想情况下,市场信息档案应包含当地经济和人口统计信息,预期的增长空间、目标客户的集中度等数据,因为这些数据将会直接影响其市场中目标客群的细分、金融产品的使用行为、市场竞争的类型和竞争激烈程度等。
银行的客户基础和竞争水平,将与每个市场的信息进行比对;增长潜力也将通过客户细分群体和产品计算出来。这样的分析能够帮助银行识别当前在哪些市场、产品和细分客户群体的渗透率较低,进而帮助银行制定相应的业务战略和设定客户获取、交叉销售和客户保留等同项目的优先级。
同样的,市场分析应该服务于每个银行网点的服务领域。这样的分析能够帮助银行网点确定自身的销售目标和人员配置等。
4. 运营
改进生产力和效率对于提升财务表现至关重要。其实,银行已有能够判别运营效率和跟踪绩效表现的大量数据,只是这些数据需要更好地进行收集、组织和分析。运营效率的分析方式是针对支持部门和直接面向客户的部门,选取一定数量的相关指标进行分析与排名;同时还可再与行业标杆数据进行比对。
这项分析的目的是识别银行在哪些方面与同业的做法存在着差距、以及差距的大小,同时还将有助于银行制定相应的提升策略和优化措施,以便达到改进产能与效率的目标。
5. 渠道与销售
对每一个网点在其服务范围内的经营特色、发展机会与现状进行分析,是非常有必要的。每个网点的绩效分析维度应包含:销售和服务活动、财务表现、运营成本、人员配置水平与人员构成,以及网点的活力。
我们建议将网点的绩效分析与市场分析相结合。这样做能够帮助管理层对市场营销经费的分配、人员配置水平、以及应该关闭哪些网点、在什么地方开始新网点、如何对部门进行重组等方面做出更为合理的决策。
另外,建议银行对每个网点的手机银行和网上银行的覆盖比例进行分析。这样的分析一方面能够与同业标杆数据进行对比分析,同时也能够有助于制定更为有效的市场策略和营销项目。
这五个方面的分析能够相对容易地开展并为管理者、投资人和并购伙伴提供关键的信息。对于大部分银行而言,将有限的资源投入在小数据分析上而不是昂贵的大数据分析上,实则更为合理一些。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18