
大数据和人工智能为广告主带来的价值
1、所有这些不同时机加在一起,可以给广告主指出特定场合的最佳广告。这称为契机评分(moment scoring),由此产生的这种同步计算结果是人工智能(AI)与大数据结合的产物。
2、有了这么多的数据积累和这么快的决策速度,那全自动的广告投放就变得可行,不过这并不意味着不需要人的贡献。记住,人工智能的全部学习过程都需要人的理解力,去调整参数、广告传递的信息、广告创意,并且优化它们的结果。
3、能了解广告每一次被受众看到的实际价值将是一个重要的差异化优势。用户现在对你的广告作出反应的可能性有多大?这是主要问题。而最佳的做法是,如果你已经采用了人工智能和大数据来了解受众的反应,那么就不要再凭空去猜测。
近年来,人们使用媒体与社交网络的方式发生了巨大的变化。一个很好的例子就是移动媒体提供了难能可贵的便利性。移动媒体是21世纪的一个强烈特征,促使我们去提升管理大量信息的能力。这种环境下,广告主都想要找到优质的服务、技术、应用,来帮助自己组织和实施程序化的。
我们生活在数字时代中,消费者拥有充分的选择权,由此迫使广告主进行重大调整,提供独有的客户体验、个性化定制并且适应消费者的偏好与需求。每天,无论我们在做什么,我们都会收到激发“灵感与欲望”的信息。因而我们认为,对于广告主而言,只是靠个人资料信息来争取目标受众,这种旧的做法再也不顶事了。如今,关键在于能否找准契机!
在这个新世界里,广告主的成败将取决于能否理解最理想的时机在哪并据此果断采取行动,还取决于能否提高投资回报率。要做到这一点,就需要挖掘其他参数,比如了解你的客户是谁,知道他们在不同情况下会做出何种反应,快速决定如何及何时向用户提出建议。一个人每天的行为习惯很可能都会不一样。同样是每天下午两点前十四个小时的行为,周二与周六可能完全是两码事。我们周围的一切都会影响购买决定——一个人是不是买了张机票,外面是不是在下雨,或者最近看了一段有关如何开发一块新地的网络视频。
所有这些不同时机加在一起,可以给广告主指出特定场合的最佳广告。这称为契机评分(moment scoring),由此产生的这种同步计算结果是人工智能(AI)与大数据结合的产物。随着算法不断地产生即时计算结果,我们的AI也在不断迭代演进,在这个过程中信息得到添加,让市场营销对消费者下一次有机会观看广告的影响力得到提高与加强。数据在这种模式下源源不断地生产出来,让广告主能以理想的公众形象表达,完成更多成功的广告活动。
人工智能应用效果的另一个例子是“快速判断”。通过对网络足迹进行过滤,依据消费者上网期间的购买行为,就能够有针对性地向他们投放广告活动。比如有人逛体育类网站时买了东西,就会向他投放跟体育有关的广告。随着时间的推移,经过学习的AI就能识别这些用户当中谁是某类运动(比如足球)的爱好者。利用这个结果,消费者将获得一个新的评分,相比过去那种基于消费者泛泛兴趣的评分能更好地帮助广告主提高对目标受众的定位精度。
有了这么多的数据积累和这么快的决策速度,那全自动的广告投放就变得可行,不过这并不意味着不需要人的贡献。记住,人工智能的全部学习过程都需要人的理解力,去调整参数、广告传递的信息、广告创意,并且优化它们的结果。
在这个复杂的虚拟世界里,对于一个成功的广告活动而言,能了解广告每一次被受众看到的实际价值将是一个重要的差异化优势。用户现在对你的广告作出反应的可能性有多大?这是主要问题。而最佳的做法是,如果你已经采用了人工智能和大数据来了解受众的反应,那么就不要再凭空去猜测。换句话说,要让消费者对你的品牌产生好感,关键就在于找准契机,而且这也自然能让你的广告活动达到最佳效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01