
现在很多行业都已经开始利用大数据来提高销售, 降低成本, 精准营销等等,然而, 其实大数据在网络安全与信息安全方面也有很长足的应用。
通过大数据, 人们可以分析大量的潜在安全事件, 找出它们之间的联系从而勾勒出一个完整的安全威胁。 通过大数据, 分散的数据可以被整合起来, 使得安全人员能够采用更加主动的安全防御手段。
今天, 网络环境极为复杂, APT 攻击以及其他一些网络攻击可以通过对从不同数据源的数据的搜索和分析来对安全威胁加以甄别, 要做到这一点, 就需要对一系列数据源的进行监控, 包括 DNS 数据, 命令与控制( C2) , 黑白名单等。 从而能够把这些数据进行关联来进行发囧。
企业针对安全的大数据分析下面是一些要点:
DNS 数据
DNS 数据能够提供一系列新注册域名, 经常用来进行垃圾信息发送的域名, 以及新创建的域名等等, 所有这些信息都可以和黑白名单结合起来, 所有这些数据都应该收集起来做进一步分析。
如果自有 DNS 服务器, 就能过检查那些对外的域名查询, 这样可能发现一些无法解析的域名。 这种情况就可能意味着你检测到了一个“域名生成算法”。 这样的信息就能够让安全团队对公司网络进行保护。 而且如果对局域网流量数据日志进行分析的话 , 就有可能找到对应的受到攻击的机器。
命令与控制( C2 )系统
把命令与控制数据结合进来可以得到一个 IP 地址和域名的黑名单。 对于公司网络来说, 网络流量绝对不应该流向那些已知的命令与控制系统。 如果网络安全人员要仔细调查网络攻击的话, 可以把来自 C2 系统的流量引导到公司设好的“ 蜜罐 ”机器上去。
安全威胁情报
有一些类似与网络信誉的数据源可以用来判定一个地址是否是安全的。 有些数据源提供“是”与“否”的判定, 有的还提供一些关于威胁等级的信息。 网络安全人员能够根据他们能够接受的风险大小来决定某个地址是否应该访问。
网络流量日志
有很多厂商都提供记录网络流量日志的工具。 在利用流量日志来分析安全威胁的时候, 人们很容易被淹没在大量的”噪音“数据中。 不过流量日志依然是安全分析的基本要求。 有一些好的算法和软件能够帮助人们提供分析质量。
” 蜜罐“数据
” 蜜罐“可以有效地检测针对特定网络的恶意软件。 此外, 通过”蜜罐“获得的恶意软件可以通过分析获得其特征码, 从而进一步监控网络中其他设备的感染情况。 这样的信息是非常有价值的, 尤其是很多 APT 攻击所采用的定制的 恶意代码 往往无法被常规防病毒软件所发现。 参见本站文章企业设置 ”蜜罐“的五大理由
数据质量很重要
最后, 企业要注意数据的质量。 市场上有很多数据可用, 在安全人员进行大数据安全分析时, 这些数据的质量和准确性是一个最重要的考量。 因此, 企业需要有一个内部的数据评估团队针对数据来源提出相应的问题, 如: 最近的数据是什么时候添加的 ? 有没有样本数据以供评估? 每天能够添加多少数据? 这些数据哪些是免费的? 数据总共收集了多久?
安全事件和数据泄露的新闻几乎每天都能够出现在报纸上, 即使企业已经开始采取手段防御 APT , 传统的安全防御手段对于 APT 之类的攻击显得办法不多。 而利用大数据, 企业可以采取更为主动的防御措施, 使得安全防御的深度和广度都大为加强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04