
在Springboard,我们的学生经常问我们这样的问题“数据科学家是做什么?”或者“数据科学家每天的工作是什么样子?”这些问题很棘手。答案因角色和公司不同而不同。
因此,我们咨询了Raj Bandyopadhyay, Springboard数据科学教育主管,看看他是否有一个更好的答案。Raj提供了下图中的框架,它既可以帮助你了解数据科学家的日常工作,也可以帮你理解数据科学解决问题的流程,Raj称之为“数据科学工作流程”。
在解决问题之前,首先要做的是把问题界定清楚,去定义它到底是什么。你必须能够将数据问题转化为可操作的东西。
你经常会从持有问题的人那里得到模糊的描述。你必须培养直觉:通过问一些别人不会问的问题,把这些模糊描述转换成可操作的问题。
假设您正在为公司的销售人员解决问题,你应该了解他们的目标是什么以及数据问题背后真正的本质是什么?在你开始考虑问题之前,你必须与他们合作,明确界定问题。正确地提问是这一步骤的关键。你应该弄清楚销售过程是什么样子,谁是客户。你需要尽可能了解背景知识以便将数据转换为洞察力。为此,你应该问类似下面的问题:
(1)谁是顾客?
(2)他们为什么买我们的产品?
(3)我们如何预测,一个客户是否会买我们的产品?
(4)表现好和差客户细分群体之间的区别在哪里?
(5)如果我们不能把产品卖给目标客户,我们的损失有多大?
在回答你的问题时候,销售人员可能会发现他们想知道为什么产品在部分细分客户群体中的销售不及预期。他们的最终目标可能是确定是否继续投资于这些群体,或是降低它们的优先级。这样你进一步细化了问题,针对细化后的问题发掘答案。在这个阶段的最后,你应该有了所有你需要解决问题的背景知识。
一旦定义好了问题,你需要通过数据来寻找解决方案。这一进程中要想清楚需要什么样的数据?通过什么渠道可以获取这些数据?是要内部数据库数据还是需要购买外部数据?
或许你可能会发现,你要数据都存储在公司的客户关系管理CRM系统中,那么就可以将数据用CSV文件的形式导出。
现在,你有了原始数据,但是还需要为后续的分析做数据预处理。通常情况下,数据都是杂乱无章的,特别是没有很好地存储的情况下。很多东西都可以导致后续分析的错误:null值,重复值和缺失值。对数据的精心核查才能保障从数据中得到有价值的见解。
你要检查以下常见错误:
(1)缺失值,例如客户没有初次接触日期
(2)损坏值,如无效输入项
(3)时区差异,也许你的数据库没有考虑到用户处在不同的时区
(4)日期范围错误,也许你会有没有任何意义日期数据,比如销售开始前的注册数据。
你需要对数据文件的行和列进行统计,并对某些值进行测试,看看它们是不是有意义。如果您发现没有意义,你需要删除数据,或者使用默认值替换它。这里,你需要利用你直觉:如果客户没有初次接触日期,是否就真没有初次接触日期?或者你可以询问销售人员,是否是把初次接触日期的数据弄丢了?一旦你完成数据清理工作,你就可以开始准备探索性数据分析。
当你的数据是干净的,你就应该开始使用它!这里的困难在于如何对真正有见解的想法进行测试。你必须为数据科学项目设定最后期限(销售人员可能正等待的分析),所以你必须对问题进行优先级划分。“你必须先看看最有趣的模式:帮助解释为什么某些客户群体的销量减少了。您可能会注意到,他们在社交媒体上不是非常活跃,只有少数人有Twitter或Facebook帐户。您可能还注意到,其中大部分人的年龄偏大,你可以开始跟踪这些模式进行更深入分析。
这一步你要应用统计学、数学和数据科学工具,围绕有趣的模型进行详细分析。
在这种情况下,你可能需要创建预测模型比较业绩不佳组客户与客户平均。你可能会发现,年龄和社交媒体活跃度是影响购买产品的显著因素。
如果你在问题界定阶段就已经了解了很多背景信息,你可能会意识到该公司营销活动集中在社交媒体上与年轻受众进行互动。但是某些客户却喜欢电话的交流,而不是社交媒体。你开始看到该产品的营销方式对销售的影响,也许那部分客户是不应该流失的群体。公司应该从过分依赖社会化媒体营销策略向更加个性化的策略转变。
现在,您可以将所有数据定量分析得到的定性见解,通过讲故事的方式说服相关人员采取行动。
让销售人员理解你们的发现很重要。沟通交流的有效性决定了你的方案是否被采纳。
你应该撰写一个有令人信服的故事,将自己的知识与数据恰当嵌入其中。你可以从解释老年人中销售业绩不佳背后的原因开始;你可以巧妙地将销售人员给你信息和数据中发现见解结合起来;然后你转到解决问题的具体办法:可以将部分资源从社会化媒体转移到私人电话推销中。
了解以上步骤,对于系统思考数据科学有极大的帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29