京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在Springboard,我们的学生经常问我们这样的问题“数据科学家是做什么?”或者“数据科学家每天的工作是什么样子?”这些问题很棘手。答案因角色和公司不同而不同。
因此,我们咨询了Raj Bandyopadhyay, Springboard数据科学教育主管,看看他是否有一个更好的答案。Raj提供了下图中的框架,它既可以帮助你了解数据科学家的日常工作,也可以帮你理解数据科学解决问题的流程,Raj称之为“数据科学工作流程”。
在解决问题之前,首先要做的是把问题界定清楚,去定义它到底是什么。你必须能够将数据问题转化为可操作的东西。
你经常会从持有问题的人那里得到模糊的描述。你必须培养直觉:通过问一些别人不会问的问题,把这些模糊描述转换成可操作的问题。
假设您正在为公司的销售人员解决问题,你应该了解他们的目标是什么以及数据问题背后真正的本质是什么?在你开始考虑问题之前,你必须与他们合作,明确界定问题。正确地提问是这一步骤的关键。你应该弄清楚销售过程是什么样子,谁是客户。你需要尽可能了解背景知识以便将数据转换为洞察力。为此,你应该问类似下面的问题:
(1)谁是顾客?
(2)他们为什么买我们的产品?
(3)我们如何预测,一个客户是否会买我们的产品?
(4)表现好和差客户细分群体之间的区别在哪里?
(5)如果我们不能把产品卖给目标客户,我们的损失有多大?
在回答你的问题时候,销售人员可能会发现他们想知道为什么产品在部分细分客户群体中的销售不及预期。他们的最终目标可能是确定是否继续投资于这些群体,或是降低它们的优先级。这样你进一步细化了问题,针对细化后的问题发掘答案。在这个阶段的最后,你应该有了所有你需要解决问题的背景知识。
一旦定义好了问题,你需要通过数据来寻找解决方案。这一进程中要想清楚需要什么样的数据?通过什么渠道可以获取这些数据?是要内部数据库数据还是需要购买外部数据?
或许你可能会发现,你要数据都存储在公司的客户关系管理CRM系统中,那么就可以将数据用CSV文件的形式导出。
现在,你有了原始数据,但是还需要为后续的分析做数据预处理。通常情况下,数据都是杂乱无章的,特别是没有很好地存储的情况下。很多东西都可以导致后续分析的错误:null值,重复值和缺失值。对数据的精心核查才能保障从数据中得到有价值的见解。
你要检查以下常见错误:
(1)缺失值,例如客户没有初次接触日期
(2)损坏值,如无效输入项
(3)时区差异,也许你的数据库没有考虑到用户处在不同的时区
(4)日期范围错误,也许你会有没有任何意义日期数据,比如销售开始前的注册数据。
你需要对数据文件的行和列进行统计,并对某些值进行测试,看看它们是不是有意义。如果您发现没有意义,你需要删除数据,或者使用默认值替换它。这里,你需要利用你直觉:如果客户没有初次接触日期,是否就真没有初次接触日期?或者你可以询问销售人员,是否是把初次接触日期的数据弄丢了?一旦你完成数据清理工作,你就可以开始准备探索性数据分析。
当你的数据是干净的,你就应该开始使用它!这里的困难在于如何对真正有见解的想法进行测试。你必须为数据科学项目设定最后期限(销售人员可能正等待的分析),所以你必须对问题进行优先级划分。“你必须先看看最有趣的模式:帮助解释为什么某些客户群体的销量减少了。您可能会注意到,他们在社交媒体上不是非常活跃,只有少数人有Twitter或Facebook帐户。您可能还注意到,其中大部分人的年龄偏大,你可以开始跟踪这些模式进行更深入分析。
这一步你要应用统计学、数学和数据科学工具,围绕有趣的模型进行详细分析。
在这种情况下,你可能需要创建预测模型比较业绩不佳组客户与客户平均。你可能会发现,年龄和社交媒体活跃度是影响购买产品的显著因素。
如果你在问题界定阶段就已经了解了很多背景信息,你可能会意识到该公司营销活动集中在社交媒体上与年轻受众进行互动。但是某些客户却喜欢电话的交流,而不是社交媒体。你开始看到该产品的营销方式对销售的影响,也许那部分客户是不应该流失的群体。公司应该从过分依赖社会化媒体营销策略向更加个性化的策略转变。
现在,您可以将所有数据定量分析得到的定性见解,通过讲故事的方式说服相关人员采取行动。
让销售人员理解你们的发现很重要。沟通交流的有效性决定了你的方案是否被采纳。
你应该撰写一个有令人信服的故事,将自己的知识与数据恰当嵌入其中。你可以从解释老年人中销售业绩不佳背后的原因开始;你可以巧妙地将销售人员给你信息和数据中发现见解结合起来;然后你转到解决问题的具体办法:可以将部分资源从社会化媒体转移到私人电话推销中。
了解以上步骤,对于系统思考数据科学有极大的帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03