京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师到底是做什么的
从事数据分析师工作这么久,还是还是想知道数据分析师到底是做什么的?相信这个问题也困扰着大家。
他们总关心一些专业词汇(arpu,pcu,还有很多我也不知道的英文字母组合),图表怎么做,excel工具怎么用,结论怎么写…下面我说说我是怎么看数据分析的:数据分析是一个方法,但不是唯一的方法数据分析的优点是相对客观,但是缺点也很明显,人力和时间成本很高。
游戏里的数据分析无非就是要实现2个目的:1.发现现存问题的本质,并解决他(99%)2.发现一些趋势,以便未来做的更好(1%)其中第一个目的占99%!第二个目的我没见人专门做过,我自己也从来没有专门做过类似的事情,最多就是数据看多了,瞎猫碰上死耗子,发现点趋势来。所以数据分析主要是为了发现问题,解决问题而做的。发现问题和解决问题的方法有很多种,有时候数据分析并不是最好的办法。例如:新版本很快就要更新了,一还有一堆准备工作没有完成,这个时候你发现新出的装备卖的很不好,远远不如预期。
如果你还花很多时间去分析为什么那个装备卖的不好,那你就耽误了更重要的新版本!当时间不够的时候,分清主次,别再数据分析上浪费时间。找不同类型的用户聊聊,基本就能发现主要的问题所在了。数据分析不是万能的数据分析能够发现代码的问题根源,但是很难解释用户的行为。点击打开大图 如上图中,当我们通过数据发现游戏里的大R流失了。数据能做的就已经到尽头了,数据无法告诉我们流失的具体原因。数据不能告诉我们用户是因为公司破产而停止玩游戏,还是因为跑去玩其他游戏了,还是因为玩累了不想玩了… 数据很多时候也解释不清楚,只是通过数据的不断细分,我们能把问题的范围缩小再缩小,而不是在茫茫大海里找一根针。
所以再牛B的数据分析师,如果不了解产品,不了解用户,也没用!数据分析不是把图表和文字堆砌出来就行了 见过很多数据分析:排版整洁,图表做的很漂亮,每页都有公司logo和版权说明,乍一看感觉好牛B! 但再一看内容,纯属一堆垃圾! 数据采样完全不科学 根本没有细分数据,只有一堆说明不了问题的宏观数据 没有任何对比数据 数据完全不能支撑“分析”得出的结论
简单总结:结论全是主观臆断,跟堆砌的数据和图表完全无关。数据分析师是一个很严谨的事情,每个结论都应该从数据中得出,数据不能说明的问题只能是猜测。所以当我们写下每一个结论的时候,一定要搞清楚这个是“我觉得是这样”,还是“我从数据中发现是这样”!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22