京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据时代你用什么来做数据分析的
数据规模的持续增长早已是行业定律,据了解,互联网上每一秒钟传输的视频,需要花费一个人5年的时间才能看完。可见数据量之大,数据增长之快已经越来越超乎我们的想象。商业决策也开始越来越依赖数据的分析,如此,建立正确的数据联系,形成准确的数据分析就成为抓住时代机遇的关键。
近日,笔者从外媒看到几款实用的大数据模型工具,部分笔者亲测好用哦!让我们来看看都有什么软件吧!
PowerDesigner
PowerDesigner
PowerDesigner是Sybase的企业建模和设计解决方案,采用模型驱动方法,将业务与IT结合起来,可帮助部署有效的企业体系架构,并为研发生命周期管理提供强大的分析与设计技术。功能包括:完整的集成模型,和面向包含IT为中心的、非IT为中心的差异化建模诉求。
PowerDesigner将多种标准数据建模技术集成一体,并与.NET、WorkSpace、PowerBuilder、Java、Eclipse等主流开发平台集成起来,进而为企业提供哦你合理的数据分析和具有针对性的解决方案。
ER/Studio
ER/Studio
ER/Studio同时支持逻辑模型和物理模型,是一套模型驱动的数据结构管理和数据库设计产品。主要用于帮助企业发现、重用和文档化数据资产。
ER/Studio通过可回归的数据库支持,使数据结构具备完全地分析已有数据源的能力,并根据业务需求设计和实现高质量的数据库结构。易读的可视化数据结构加强了业务分析人员和应用开发人员之间工作沟通的能力。相比PowerDesigner,ER/Studio Enterprise更能够使企业和任务团队通过中心资源库展开协作,提高团队作战能力。
品牌:空格 服务器2Sparx Enterprise Architect与CA ERwin
Sparx Enterprise Architect
Sparx Enterprise Architect
Enterprise Architect拥有完整的建模生命周期,是一个拥有丰富功能的数据建模工具。主要功能是:提供建模工具、特性丰富系统设计、端到端的全面跟踪,还能提供直观高效的工作界面。
Enterprise Architect帮助企业用户快速建立强大的可维护的系统,而且很容易在共享项目中扩展到大型的协作团队中去。例如Enterprise Architect可以连接到SQL服务器、MySQL, Oracle9i, PostgreSQL, MSDE,Adaptive Server Anywhere 和 MS Access backends以实现知识库共享。
CA ERwin
CA ERwin
CA ERwin是一个功能强大的大数据分析管理工具。它为设计、生成、维护高水平的数据库应用程序提供了非凡的工作效率。 从描述信息需求和商务规则的逻辑模型,到针对特定目标数据库优化的物理模型,ERwin帮助您可视化地确定合理的结构、关键元素,并优化数据库。
CA ERwin Data Modeler提供了许多版本以帮助管理您的企业数据。
Standard Edition提供了桌面设计和建模功能,可使用简单的图形界面管理您的复杂数据环境。
Workgroup Edition旨在为数据建模者团队的协作建模提供帮助。
Navigator Edition提供了对ERwin数据模型的只读访问。
Community Edition是免费的入门级数据建模工具,它是CA ERwin Data Modeler Standard Edition产品的一个子集。
另外,CA Erwin有一个很活跃的用户讨社区,使得用户之间可以分享知识和各种经验,相互学习。
据统计,2014年全球大数据市场规模达到285亿美元;到2020年,全球大数据市场规模将达到1263.21亿美元,同比增长17.51%。大数据分析师已经成为一种专业、稀缺的资源,如何利用好身边的数据分析工具,建构出完善的数据分析模型就是我们需要学习的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22