京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业大发展、大机遇、大红利时代到来
“近年来大数据的采集并处理,存储、通信、管理、风险、挖掘、展现、应用和安全等技术正取得重大进展,互联网+新业态正在快速建立,国家工业、农业万众创新等大数据工程正不断涌现并取得显著的成效。”3月2日上午,在北京国家会议中心举办的“2016云上贵州·大数据招商引智推介会”上,嘉宾代表中国工程院院士、贵州省大数据专家咨询委员会主任李伯虎在演讲中称,大数据产业大发展、大机遇、大红利的时代已然到来,对于贵州来说,先发优势明显,领先地位突出。
作为首届贵州省大数据产业咨询委员会中的一员,并参与了贵州工业云部分工作,在短短两年中,李伯虎见证了贵州在大数据技术产业应用方面取得的瞩目成就。
李伯虎在演讲中介绍,2014年以来贵州省结合本省发展的需要和先天优势,抓住大数据时代的重大机遇,大胆探索先行先试,发展势头风生水起,实现了在大数据平台、商业模式创新、绿色数据中心、大数据交易、产业博览会、国家产业集聚与产业试验区、地方大数据法规、国家级实验室等诸多方面的八个率先,“正如习近平总书记所言‘贵州发展大数据确实有道理’,这便是对贵州大数据技术产业应用、发展成就的高度肯定。”
2015年9月,国务院发布的《促进大数据发展行动纲要》,正积极推动着中国大数据技术产业应用的快速发展。
李伯虎称,近年来大数据的采集并处理,存储、通信、管理、风险、挖掘、展现、应用和安全等技术正取得重大进展,基于泛在网络的,以泛在互联、数据驱动、共享服务、跨界融合、自主智慧、万众创新为特征的互联网+新业态正在快速建立,我们国家工业、农业万众创新等大数据工程正不断涌现并取得显著的成效。
“显而易见,大数据产业大发展、大机遇、大红利的时代已然到来,贵州省作为我国首批国家大数据综合试验区,先发优势明显,领先地位突出。”李伯虎说道。
对于贵州大数据技术产业和应用的再发展,李伯虎在演讲最后提出了5点建议:
第一、坚持贯彻国家提出的创新、协调、绿色、开放、共享的五大发展理念,推动贵州大数据技术产业应用的新发展;
第二、坚持贵州省提出来的“三个问题”、“四个理念”、“五个层次产业链”、“三个业态”、“三个中心”的“34533”发展框架,持续完善深化大数据技术产业应用的系统化新发展;
第三、坚持以新应用为导向,带动大数据技术产业应用的新发展,贵州省从2014年起推动建设工业云等7+N朵云,到现在发展为百花齐放的20朵云,丰富大数据新应用必将引领落实大数据技术产业和应用的创新和繁荣;
第四、坚持新兴新技术和应用领域技术深度融合,由于大数据技术产业应用的复杂性、综合性和艰巨性,因此必须充分融合云计算、互联网、移动互联网、智能科学技术、高性能计算、虚拟现实、增强现实、信息安全等信息技术和各应用领域技术的新成果,这样才能推动大数据领域技术产业和应用的创新突破。
第五、坚持政产学研用精,融合创新发展的系统工程发展机制。我国航天领域多年来积累的探索一代、预研一代、研制一代、生产一代、应用一代的系统工程方法,以及美国2012年提出的产学研用联合的国家制造创新网络计划值得借鉴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01