京公网安备 11010802034615号
经营许可证编号:京B2-20210330
吃饭、睡觉、旅行、走路、购物,所有纯物理性的行为都成为可被记录数据的组成部分,这些看似与我们的生活、工作、赚钱等无关的行为,正成为新时期的价值瑰宝,谷歌、亚马逊、Facebook、百度、阿里巴巴等均陷在其中而不能自拔。
近期,腾讯、搜房、浪潮集团、易观等纷纷与统计局签署了大数据战略合作框架协议,再加上去年签署的11家公司,越来越多的互联网公司、传统企业数据正被纳入新构建的大数据“基地”当中。
不少人对大数据的概念有很大误解,甚至有不少公司搭上“大数据”的概念来玩资本运作。大数据并不仅仅是“大”,但它首先得“Bigger”,拥有足够量级的数据才能被称作大数据,所以你看到仅仅分析几百人的数据就说自己是大数据的公司基本上都是骗子。我不认为当前有多少公司量级的数据能够是“Bigger”的。对于用户级市场,至少该产品的用户量达到亿级,达到该产业用户量的前几名;对于企业级市场,也至少得拥有足够量级的企业用户,才算得上拥有大数据的基础,再加上用户使用各个产品的习惯大不相同,所以当前的大数据绝对是缺憾的,抽样数据并不准确不是么?多谈无益,故本文纯从数据来分析。
数据的记录
数字产品的出现,迅速让用户的个人信息能够被记录,电脑、智能手机、可穿戴设备、智能硬件、未来的智能电视等正成为数据记录的新工具,其中较为热门的是围绕医疗需求来建立相关的数据记录,睡眠、血压、体重等产品较多,虽然这些产品的用户量并不“多”,但是硬件厂商们依然乐此不彼的做着这一切。
要想让数据能够真正的发挥作用,首先这些数据肯定得被记录,必须有了记录才会有相关的模型分析,否则都是纸上谈兵。比如用户的睡眠时间、用户的出行时间、用户每天所摄入食物的卡路里、用户吃饭的消费金额等等,所有出现的物理性数据,只有被记录了这些数据才会有价值,没有记录,这些都是“废物”,没人会重视这些物理性动作的价值。
数据如何才能被记录?首先得有工具,拿医疗为例,我们在医院看病,医生会使用相关仪器记录用户的心跳周期;我们去餐厅吃饭,餐厅会记录每桌顾客的消费记录以及用户最爱点的菜品;我们在网上使用搜索引擎,搜索引擎会记录用户的搜索习惯。医疗器械、ERP系统、电脑等成为了数据记录的工具。
数据被记录是用户被动选择的结果,如果用户不去医院检查,那么数据就不会被记录,用户去了B餐厅而不是A餐厅消费,A餐厅也无法获取到用户的喜爱。所以,可穿戴设备、智能硬件等都试图让用户能够主动将自身的数据被记录,应该说这也是UGC模式的一种,用户自愿将自身的数据提供到平台上去,供平台进行分析。
被动和主动的区别是非常大的,被动就意味着有用户的数据会流失掉,当流失掉的这部分用户足够多以后,新的数据模型就无法完成。记录是数据的基础,接下来就是连接。
连接
用户不可能一直在某个餐厅消费,也不可能一直在某一个地方睡眠,至于可穿戴设备,用户也很难做到每天都按时去佩戴,让自身的数据可以记录。单个用户某一行为被不同商家记录,而这些商家记录的数据是分离的、独立的,无法形成连贯性,当这些被记录的数据到了一定时间滞后,肯定是面临被丢弃的命运。让数据能够同平台的相互连接,要比单个“独霸”有用的多。
另一方面,就是数据和用户的连接,如何让用户的数据能够被主动贡献出来,并通过互联网、移动互联网相互连接,形成数字存储而不是纸质记录,这是当前围绕数据进行创业者的思考。
跨界连接是最困难的,就像拼图一样,如何通过混乱的形体组合,形成有效的画面。比如餐饮和超市购物、搜索和社交、电商和社交等,这些数据得形成有效的连接。单一的从搜索行为就分析出用户的购物行为或者其他行为是有失偏颇的,搜索的需求太单一,并不能是用户整个的行为特征。只有综合用户搜索、购物、社交等多个使用行为,才能有效的分析出用户的某个行为特征。
有效的价值转化
从记录→连接→价值转化,这肯定是一个漫长的过程,要知道先祖们用了数千年的时间也仅将少量的数据形成转化并遗传下来。互联网、移动互联网在国内的发展还不足20年,而数据从被重视到被记录到被连接,就更是一个漫长的过程,目前市场上的智能手环、智能手表、无线路由器、盒子等产品虽然都不尽人意,但是其无一不在让数据变的有效的道路上奋斗着。
将用户的搜索数据记录并有效价值转化,最早的案例是谷歌当年预测流感病毒,当然,已有不少互联网公司都有将用户数据记录、连接并实现有效的价值转化。互联网公司离数字存储最近,占据着有利条件,能够更敏锐也是正常。
不过,仅仅有互联网的数据是不完全的,用户在线下的数据,用户在生活中的数据,在更多不使用互联网情况时使用的数据,我把它称之为物理数据,这部分数据是现实生活当中的数据,其价值要高于互联网络上的数据的,互联网公司们正在吸收着这些数据。
数据的有效转化,可以体现在几个方面,一是预防,针对企业级的。应该说每个行业都有泡沫的存在,就算没有泡沫,也会有倒闭的风险,通过对相关数据的分析,可以对未知的风险起到一定的预防措施,即使不能避免,至少能更大程度上的减少损失,并能够助力公司挺过这场风暴。
一是隐性价值,针对用户级的。比如时间成本,通过地图工具和当地公交系统对接,让用户实时了解公交车的到站时间,节约用户等待公交车的时间,海量用户的时间成本加起来,肯定是一笔不菲的价值。再比如健康预防,越来越多的慢性病开始向用户渗透,通过对相关数据记录、连接,让用户能够尽早预防慢性病的发生,比如肥胖的问题(健康产品的前提是有高质量的医疗体系在背后支撑)。
让所有可能有价值的数据都被记录、连接,再将这些数据分析之后,实现有效的价值转化,互联网公司、传统企业、统计机构、用户,所有人都是这场风暴的参与者。我们应该给予正在为这场大风暴做贡献的企业和创业团队,可能有人被“掉队”,也有人可能在这场风暴中崛起。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01