
很早的时候,大家在SPSS中处理单个变量的重复值通常都是这样的做法,首先将要处理的数据进行排序,然后将其复制后在从新变量的第二行开始粘贴,得到了两个观察量错开一个位置的变量 ,然后对这两个变量进行相减,最后挑选或删除为零的选项以获得完全无重复的数据。这样的做起来不算困难,但处理2个或2个以上变量的重复值就显得有点乏力了。下面就芒果的例子利用SPSS syntax对重复观测值的处理进行相关探讨,简要数据如下:
问题1.找出上表中zkzh相同且itemid也相同的所有记录。
上图是syntax命令及说明,关于sort cases/match files/filter等命令见下面小贴士的说明,首先看看数据处理结果:
问题2. 如何快速的分离出被筛选的变量?
还是利用上面的例子,我们利用dataset copy命令将被筛选出的观测值快速的筛选出来,形成一个新的数据集。
#1Filter off.
#2Dataset copy shaixuanji.
#3DATASET ACTIVATEshaixuanji.
#4SELECT IF thesame=0.
#5EXECUTE .
代码解析:
第1行命令利用filter off命令清除上面的筛选效果。
第2行命令式将当前数据集复制到新的数据集shaixuanji中。
第3-4行命令是激活数据集shaixuanji,并且选择thesame变量中值为0的观测值(其他的默认删除)。
第5行命令是即时运算命令。
效果如下:
如果不想要这么多的变量,可以使用save outfile.../keep(drop)命令选择自己需要的变量。
问题3.有时候我们并不知道如何筛选重复值,而是事先观察比较重复值的相关特性,然后做下一步的处理,那么如何选择输出重复值的相关信息呢?
这里还是利用最初的数据进行说明,由于目的不同,这里筛选查找重复观测值的方式也不同。问题1中采用的是match files命令来处理重复值,这里换一种方法,利用aggregate分类汇总命令来计量重复值,进而作进一步的汇总说明,具体代码如下:
#1AGGREGATE OUTFILE = * MODE = ADDVARIABLES
#2/BREAK = zkzh itemid
#3/sameCount = N.
#4SORT CASES BY sameCount (D).
#5COMPUTE filtervar=(sameCount > 1).
#6FILTER BY filtervar.
#7SUMMARIZE
#8/TABLES=zkzh itemid samecount
#9/FORMAT=LIST NOCASENUM TOTAL
#10/TITLE='重复值概述'
#11/CELLS=COUNT.
代码解析:
第1-3行命令利用aggregate命令在当前数据集中新增一个变量samecount记录分组变量zkzh和itemid相同观测值的数目,类似于GUI操作中的data--aggregate.
第4行命令对变量samecount进行降序排列.
第5行命令计算新变量filtervar,对其满足条件samecount>1赋值1,否则赋值0.
第6行命令对数据集按变量filtercar进行筛选,filtervar变量中值为0或缺失的都将被过滤.
第7-11行是制表命令,等同于GUI菜单操作中的analyze--reports--case summarises,第8行选择表中的计量变量,这里选择了zkzh等3个变量,第9-10行则是对表格的格式及标题进行设置,第11行是相关统计量的选择,这里选择的是count,除此之外还可以选择max\range\sum等其他统计量。
输出结果:
小贴士:
Filter
Filter命令是用来从当前数据集中排除观测值而不删除观测值的命令。当变量的观测值为0或缺失时这些观测值将被过滤掉(SPSS中的表现效果为)。Filter相关命令规则:
1)只允许指定一个数值变量(该变量可以是原始变量或数据转换变量)
2)使用filter off后,恢复过滤掉的观测值
3)当filter命令不包含子命令时,将按filter off命令进行等效处理,等SPSS output窗口会提示警告信息
4)Filter可以用在syntax语句的任何位置,和select if命令不同的是,filter命令在input program语句中也有同样的效果。需要注意的是这里的筛选变量需要时数据转换变量。
其他说明:
1)filter命令并没有改变当前数据集;
2)filter命令并没有提供观测值的选择过滤标准,系统缺失和用户自定义缺失值,都将被过滤掉
3)如果filter的变量名改变了,筛选效果仍然有效;但是筛选变量如果转换为字符变量时,filter命令效果将会消失
4)如果当前数据集被match files,add files或update等命令更改后,过滤变量未发生变化,filter命令仍然有效
5)如果当前数据集被一个新的数据集代替,filter命令将关闭
MATCH FILES
Match files命令可合并2个或2个以上含有相同观测值但不同变量的数据文件。例如,合并销售人员的信息和销售业绩,有点类似于数据库中的select操作。最多可以合并50个数据文件。例如,合并数据part1,part2及当前数据及可以用下面的代码,如果怕数据合并错误,可以先对这些数据集进行排序,然后利用by子命令根据排序变量进行合并,还可以利用last或first子命令赋值1说明重复值位置。
MATCH FILES FILE='/data/part1.sav'
/FILE='/data/part2.sav'
/FILE=*.
SORT Cases
Sort cases基于一个或多个变量进行排序,可以是升序(a)或降序(d),也可以是升序降序的组合。(默认为升序),Sort cases相关说明:
1)关键词by是可选的
2)By排序的变量可以是数字变量或字符变量,但不能是系统变量或临时变量(#various)
3)Sort cases是按变量顺序进行排序的,优先排序第一变量
4)Sort cases指定排序变量不能超过64个
例如:SORT CASES BY var1(A) var2(D).
*首先对变量1进行升序排列,然后再此基础上按变量2进行降序排列.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01