
用R语言进行数据分析:矩阵
在我们做数据分析时,如何用R语言进行数据分析:矩阵,下面就详细说一下,希望对数据分析爱好者有所帮助。
矩阵的创建
在R中用函数matrix()来创建一个矩阵,使用该函数时需要输入必要的参数值。matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,dimnames = NULL)
1. data向量元素列表
2. nrow行数
3. ncol列数
4. byrow 矩阵是按列优先的方式进行排序, 先列后行。byrow项控制排列元素时优先级按行。例如:
1) matrix(c(1,2,3,4,5,6),nrow=2,byrow=T)
5. Dimnames(Row_name,Col_name)给定行和列的名称,如果不需要给行或者列命名,则以NULL代替。例如:给下面的矩阵列命令
2) Demo_1<-matrix(rnorm(15)*10,5,3,dimnames=list(NULL,c(‘A’,’B’,’C’)))
矩阵的运算
1、R矩阵查看矩阵的列/行相关信息
#查看矩阵列名
colnames(Demo_1)
#查看矩阵行名
rownames(Demo_1)
#给矩阵的行命名
rownames(Demo_1)<-c(‘r1′,’r2′,’r3′,’r4′,’r5’)
#矩阵的维度
dim(Demo_1)
#返回与矩阵相同的列与行
row()/col()函数将返回一个与某矩阵有相同维数的矩阵
#返回矩阵行数与列数
nrow()返回行数
ncol()返回列数
2、R的子矩阵
#取矩阵中某个元素值,第二行第三列的值:
Demo_1[2,3]
#取矩阵中的某列,取矩阵的第一列
Demo_1[,1]
#取矩阵中的某行,取矩阵的第一行
Demo_1[1,]
#取某列大于某个值,取第二列大于3
Demo_1[Demo_1[,2]>3,]
3、R矩阵的基本运算
#矩阵加&减
Demo_2=Demo_3=matrix(1:20,nrow=5,ncol=4)
#矩阵相乘
Demo_4= matrix(1:20,nrow=4,ncol=5)
Demo_5=matrix(1:20,nrow=5,ncol=4)
Demo_4%*%Demo_5
4、增加行与列
Demo_6<- matrix(,4,2)
Demo_6[c(1,3),] <- matrix(c(1,2,3,4))
Demo_6
5、R矩阵的转置
t(Demo_1)
6、矩阵其它运算
#取对角元素
diag()
#各行汇总值
rowSums()
#各行的平均值 rowMeans()
#各位的汇总值 colSums()
#各列的平均值
colMeans()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04