京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当你开车路过一家餐厅的停车场时,你的手机屏幕上弹出了这家餐厅的当日特价菜品推荐,这种体验是不是很棒?如果赌场老板把发牌人忘记付给你的20美元亲自送还给你,你的心里是不是有点儿小激动?如果在线视频游戏能够把和我们玩法相近的用户即刻告知我们,这世界会不会变得很美妙?你是不是要下调汽车保险费率?大数据能让这一切变成现实。
网络数据即使不是最原始的大数据源,也是使用最广泛、认可度最高的大数据源。除此之外,还有很多大数据源,它们都有各自的使用价值。其中一些广为人知,而另一些几乎没有名气。我们在此要借用本章的篇幅一起来回顾除网络数据以外的其他9 种大数据源以及它们的用途。我们将站在一个较高的层次上讲解这部分内容,意图是在简单描述各类数据源的基础上,回顾每种大数据源的应用与商业含义。
我们发现了一个非常明显的趋势,各行各业虽然生成了许多大数据源,但其底层的支撑技术却是相同的。而且,不同行业还可以使用相同的大数据源。大数据并非只有单一的用途,它的影响将会非常深远。
我们将要讨论以下几种大数据源。
汽车保险业:车载信息服务数据的价值。
多个行业:文本数据的价值。
多个行业:时间数据与位置数据的价值。
零售制造业:RFID 数据的价值。
电力行业:智能电网数据的价值。
博彩业:筹码跟踪数据的价值。
工业发动机和设备:传感器数据的价值。
视频游戏:遥测数据的价值。
电信业与其他行业:社交网络数据的价值。
汽车保险业:车载信息服务数据的价值
车载信息服务在汽车保险行业中的关注度非常高。车载信息服务是通过汽车内置的传感器和黑盒来收集和掌握车辆的相关信息。我们可以配置不同的方案,使用黑盒来监测所有的汽车数据。我们可以监测车速、行驶里程,以及汽车是否安装了紧急制动系统。车载信息服务数据能够帮助保险公司更好地理解客户的风险等级,并设置合理的保险费率。如果彻底地忽略隐私问题,车载信息服务装置可以跟踪到汽车去过的所有地点、何时到达的、以多快的速度、使用了汽车的哪些功能等。
车载信息服务可以潜在地降低司机的保险费率,并提升保险公司的收益。它是怎样做到在降低费率的同时提升收益呢?答案就在于保险公司要根据风险评估来进行保险定价。传统的风险评估方法使用的是年龄、人口统计特征以及个人意外伤害历史这类数据,它们只能提供高层次的概要信息。对于驾驶记录没有任何问题的车主,传统方法根本没办法把他们和附近的其他人区分开。
保险公司要未雨绸缪,并做好最坏的打算。它们要弄清楚哪些人放在哪个风险范围上是最安全的,一般情况下,它们会先假定这些人的风险是位于该风险范围较高的一端。汽车保险公司对车主的行为习惯和实际风险了解得越详细,风险范围就会越窄,同时认定范围内出现需要提升费率的最坏情况的可能性就会比较小。这就是为什么可以同时降低保险费率和提升收益的原因。如果保险公司认为投保个体的风险较好,那么保险公司将可以更好地了解每个人的风险状况,预计必须支出的保费就不会发生太大变化。
全球很多国家的保险公司都在使用车载信息服务,而且数量越来越多。早期项目的注意力放在从汽车上收集最少的信息,例如,它们并不关心汽车去过什么地方。早期项目跟踪的是汽车开了多远、什么时候开的车、是否超速和是否使用了大量的紧急制动。这些信息都是非常基本的信息,不牵涉到个人隐私,是故意设计成这样的。因为避免了收集高度敏感的信息,所以才会被广泛地接受。这个道理也同样适用于商业车队。如果保险公司了解到公司车队更多的用车情况,那么它为公司车队确定保险费率也就更容易。
车载信息服务数据最初是作为一种工具出现的,它可以帮助车主和公司获得更好的、更有效的车辆保险。再过一段时间,等到许多交通工具都安装了车载信息服务装置后,那时保险业以外的行业也可以使用车载信息服务数据了。现在,公共汽车已经有了车载计算机管理系统,但是车载信息服务设备可以将其提升到一个新的层次。车载信息服务数据还有一些有趣的应用,我们来看一下这些应用。
使用车载信息服务数据
如果车载信息服务真的开始大规模应用,一定会出现许多令人兴奋的分析应用。想象一下,以后全国有数以千万计的汽车都安装了车载信息服务装置,那时候第三方研究公司会以匿名的方式为客户收集非常详细的车载通信数据。与为保险收集的有限数据不同,这时数据收集是以分钟或秒为频率,且收集内容包括但不限于速度、位置、方向和其他有用的信息。
无论交通是否阻塞,无论什么日期,这种数据反馈方式都会提供大量的车载通信信息。研究人员可以知道每辆车在道路上的行驶速度,他们还可以知道车流开始的时间、结束的时间,以及持续的时间。这种真实的交通流信息视图将会多么令人惊讶!试想这会对交通阻塞和道路系统规划的研究产生多么大的影响!
无心插柳柳成阴
车载信息服务数据的多种用途只是一个例子,它说明了可以用最初预见不到的方式来使用大数据。对于某种特定的数据源,我们最后发现它最有效的用途可能与其创建之初的用途大相径庭。面对我们碰到的每一类大数据源,我们要开拓思路,多想想常规之外的其他用途。
如果研究人员能够掌握大量汽车在每一个高峰时段、每一天、每个城市中的动向,他们就能非常清晰地判断出车流产生的前因后果。此外,还能查明下述问题的答案。
一个在路中央的轮胎会对交通产生什么影响?
左侧车道堵车会发生什么?
如果路口的交通灯不同步,会产生何种结果?
哪些十字路口虽然按照预期设定方式工作,但通行时间的设计仍然不合理?
如果某条道路堵塞,堵塞会以多快的速度蔓延到其他道路?
即使我们集中精力投入到昂贵的测试中,现在要想有效地研究诸如此类的问题也几乎是不可能的。除非我们安排人手来实际地监测每一条道路,记录下所有的信息,只有这样我们才能解决交通堵塞的问题。或者,我们可以安装大量的传感器来监测过往的车辆,还可以安装视频摄像头,但这些选择因为成本问题被严重限制了推广。
交通道路工程师做梦都想得到我们所讲的车载通信信息。如果车载通信装置变得随处可见,那任何交通拥堵的地方都能被发现。城市道路和交通管理系统的革新,以及城市道路建设规划,都将惠及普通大众。车载通信刚开始出现时是为了满足保险定价的需求,但有了它还可以缓解交通压力和驾驶员堵车时焦急等待的心情,它的存在终将使高速公路的管理模式发生革命性的改变。
多个行业:文本数据的价值
文本是最大的也是最常见的大数据源之一。想想我们周围有多少文本信息的存在,电子邮件、短信、微博、社交媒体网站的帖子、即时通信、实时会议以及可以转换成文本的录音信息。文本数据是现在结构化程度最低的,也是最大的大数据源。幸运的是,我们在驾驭文本数据、利用文本数据来更好地做商业决策方面已经做了很多工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11