
目前,大数据的发展得到政府的大力支持。如何让大数据为我们创造更多价值,是我们现在最关心的问题,同时,数据分析师人才也成为企业争抢的目标。“大数据”是一种规模大到在获取、存储、管理、分析方面,大大超出传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转等特征。 海量数据和奇思妙想加以链接,孕育着巨大价值。《2015年中国大数据发展调查报告》显示,2015年中国大数据市场规模达到115.9亿元,增速达 38%。面对庞大的市场,不仅各地政府在积极“圈地”,各大数据企业亦纷纷从中寻求商机。
数据作为一种资源,在“沉睡”的时候是很难创造价值的,需要数据挖掘。有人把大数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“用”。
如何提升大数据价值?首先要实现数据公开。数据开放是大势所趋,信息使用的边际收益是递增的,信息流动和分享的范围越大,创造的价值就越高,而线上、线下数据化和数据开放正是信息大范围流动的两大前提。推动数据开放和流通在发达国家已成为共识。自从“互联网 ”上升为国家战略后,中央不断加大力度推动数据开放,为大数据的公开奠定了坚实基础。实施大数据开放行动计划,建立统一的公共数据共享开放平台体系,其用意正是在开放共享。
其次是 要进行数据评估。大数据产业的核心枢纽是数据交易,而数据资产评估、定价是交易的核心。不过,目前大多数政府、企业确实是拥有很多数据,但仅仅限于“数据大”,而不是大数据,也并不了解自身大数据资产的价值。当前,我国缺乏一个共识性的数据资产价值评估模型或参考模型,也没有关于数据资产价值的准确定义。 此次发改委发布促进大数据发展重大工程的政策,有利于大数据评估体系的建立。
最后,是要培养大数据人才。大数据是一种虚拟化的数字及其运算逻辑,不仅需要高端的计算机知识,更需要综合掌握数学、统计学、信息工程等相关学科知识。目前国内的大数据人才储备远不能满足发展需要,尤其是缺乏既熟悉行业业务需求,又掌握大数据技术与管理的综合型人才。
大数据已经成为国家重要的战略性资源和商业创新的源泉,充分挖掘并应用大数据这座巨大而未知的宝藏,将数据变成“慧说话”的活数据,将成为政府精准管理社会的法宝和企业转型升级的关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23