
看Spark源码的时间不长,记笔记的初衷只是为了不至于日后遗忘。在源码阅读的过程中秉持着一种非常简单的思维模式,就是努力去寻找一条贯穿全局的主线索。在笔者看来,Spark中的线索就是如果让数据的处理在分布式计算环境下是高效,并且可靠的。
在对Spark内部实现有了一定了解之后,当然希望将其应用到实际的工程实践中,这时候会面临许多新的挑战,比如选取哪个作为数据仓库,是HBase、MongoDB还是Cassandra。即便一旦选定之后,在实践过程还会遇到许多意想不到的问题。
要想快速的解决开发及上线过程中遇到的系列问题,还需要具备相当深度的Linux知识,恰巧之前工作中使用Linux的经验在大数据领域中还可以充分使用。
笔者不才,就遇到的一些问题,整理出来与诸君共同分享。
NoSQL数据库的选择之痛,目前市面上有近150多种NoSQL数据库,如何在这么庞杂的队伍中选中适合业务场景的佼佼者,实非易事。
好的是经过大量的筛选,大家比较肯定的几款NoSQL数据库分别是HBase、MongoDB和Cassandra。
Cassandra在哪些方面吸引住了大量的开发人员呢?下面仅做一个粗略的分析。
1.1 高可靠性
Cassandra采用gossip作为集群中结点的通信协议,该协议整个集群中的节点都处于同等地位,没有主从之分,这就使得任一节点的退出都不会导致整个集群失效。
Cassandra和HBase都是借鉴了Google BigTable的思想来构建自己的系统,但Cassandra另一重要的创新就是将原本存在于文件共享架构的p2p(peer to peer)引入了NoSQL。
P2P的一大特点就是去中心化,集群中的所有节点享有同等地位,这极大避免了单个节点退出而使整个集群不能工作的可能。
与之形成对比的是HBase采用了Master/Slave的方式,这就存在单点失效的可能。
1.2 高可扩性
随着时间的推移,集群中原有的规模不足以存储新增加的数据,此时进行系统扩容。Cassandra级联可扩,非常容易实现添加新的节点到已有集群,操作简单。
1.3 最终一致性
分布式存储系统都要面临CAP定律问题,任何一个分布式存储系统不可能同时满足一致性(consistency),可用性(availability)和分区容错性(partition tolerance)。
Cassandra是优先保证AP,即可用性和分区容错性。
Cassandra为写操作和读操作提供了不同级别的一致性选择,用户可以根据具体的应用场景来选择不同的一致性级别。
1.4 高效写操作
写入操作非常高效,这对于实时数据非常大的应用场景,Cassandra的这一特性无疑极具优势。
数据读取方面则要视情况而定:
1.5 结构化存储
Cassandra是一个面向列的数据库,对那些从RDBMS方面转过来的开发人员来说,其学习曲线相对平缓。
Cassandra同时提供了较为友好CQL语言,与SQL语句相似度很高。
1.6 维护简单
从系统维护的角度来说,由于Cassandra的对等系统架构,使其维护操作简单易行。如添加节点,删除节点,甚至于添加新的数据中心,操作步骤都非常的简单明了。
参考资料
2.1 单表查询
2.1.1 单表主键查询
在建立个人信息数据库的时候,以个人身份证id为主键,查询的时候也只以身份证为关键字进行查询,则表可以设计成为:
create table person ( userid text primary key, fname text, lname text, age int, gender int);
Primary key中的第一个列名是作为Partition key。也就是说根据针对partition key的hash结果决定将记录存储在哪一个partition中,如果不湊巧的情况下单一主键导致所有的hash结果全部落在同一分区,则会导致该分区数据被撑满。
解决这一问题的办法是通过组合分区键(compsoite key)来使得数据尽可能的均匀分布到各个节点上。
举例来说,可能将(userid,fname)设置为复合主键。那么相应的表创建语句可以写成
create table person ( userid text, fname text, lname text, gender int, age int, primary key((userid,fname),lname); ) with clustering order by (lname desc);
稍微解释一下primary key((userid, fname),lname)的含义:
2.1.2 单表非主键查询
如果要查询表person中具有相同的first name的人员,那么就必须针对fname创建相应的索引,否则查询速度会非常缓慢。
Create index on person(fname);
Cassandra目前只能对表中的某一列建立索引,不允许对多列建立联合索引。
2.2 多表关联查询
Cassandra并不支持关联查询,也不支持分组和聚合操作。
那是不是就说明Cassandra只是看上去很美其实根本无法解决实际问题呢?答案显然是No,只要你不坚持用RDBMS的思路来解决问题就是了。
比如我们有两张表,一张表(Departmentt)记录了公司部门信息,另一张表(employee)记录了公司员工信息。显然每一个员工必定有归属的部门,如果想知道每一个部门拥有的所有员工。如果是用RDBMS的话,SQL语句可以写成:
select * from employee e , department d where e.depId = d.depId;要用Cassandra来达到同样的效果,就必须在employee表和department表之外,再创建一张额外的表(dept_empl)来记录每一个部门拥有的员工信息。
Create table dept_empl ( deptId text,
看到这里想必你已经明白了,在Cassandra中通过数据冗余来实现高效的查询效果。将关联查询转换为单一的表操作。
2.3 分组和聚合
在RDBMS中常见的group by和max、min在Cassandra中是不存在的。
如果想将所有人员信息按照姓进行分组操作的话,那该如何创建数据模型呢?
Create table fname_person ( fname text, userId text, primary key(fname) );2.4 子查询
Cassandra不支持子查询,下图展示了一个在MySQL中的子查询例子:
要用Cassandra来实现,必须通过添加额外的表来存储冗余信息。
Create table office_empl ( officeCode text, country text, lastname text, firstname, primary key(officeCode,country)); create index on office_empl(country);
2.5 小结
总的来说,在建立Cassandra数据模型的时候,要求对数据的读取需求进可能的清晰,然后利用反范式的设计方式来实现快速的读取,原则就是以空间来换取时间。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08