
民机客服工程的大数据应用
大数据技术正深刻影响着民机产业链的上下游,工业大数据缘起国外,在民机领域大数据应用发展较快,而在国内民机客服工程领域也有所突破。
大数据属于数量大 (Volume)、输入和处理速度快 (Velocity)、数据多样性 (Variety)和价值密度低 (Value) 的复杂、海量信息,无法用传统工具处理分析。大数据可分为三类:一是社交类数据,记录用户行为、反馈数据等;二是商业类数据,包括消费者数据、ERP数据、库存数据以及账目数据等;三是工业类数据,又称机器和传感器数据,包括智能仪表、工业设备传感器、呼叫记录、设备日志等。
目前工业大数据形成了以“工业互联网”为代表的美国模式、“工业4.0”为代表的德国模式和“两化融合”、“互联网 ”为代表的中国模式。
工业大数据作为大数据体系的分支,与其既有共通性,又有特殊性。在共通性方面,都是基于海量数据、分析技术和大数据思维三要素,"数据分析师"以预测为核心,以模型和算法为关键。
客服工程数字化的内在驱动是大数据
当前的民用客机研制不但在传统工程技术体系内追求突破创新,更注重从服务客户角度对产品设计方案实施再开发,即“民机客服工程”。客服工程是对产品定义的开发补充,是对产品使用性能的技术创意,它把产品操作和维修等固有特性转化为外在表现,从而构建起产品全生命周期持续安全健康运行的基础。从技术角度看,民机客服工程更多地使用数理统计和逻辑判断工具,更注重大数据在飞行效率、健康管理等领域的应用。
大数据应用的关键技术分析
数据分析师从数据源获取到产生最终价值,一般经过数据的采集准备、存储管理、计算处理、数据分析和知识展现等五个主要环节。相对于传统挖掘技术,大数据分析的技术突破主要集中在存储管理、计算处理和数据分析三个核心环节。在民机应用方面,又涉及工业物联网、航空电信网等关键技术。
"数据分析师"面对海量数据,传统存储技术一方面是存储和计算物理分离、易受I/O瓶颈制约,另一方面是数据数据冗余、扩展、容错和并发读写能力不足。谷歌文件系统(GFS)和Hadoop分布式文件系统(HDFS)在物理上将计算和存储节点结合在一起,避免了数据密集计算时的I/O堵塞;采取分布式存储架构,以提高并发访问能力,在大文件存储上的表现优异。随着应用和需求的发展,内存型数据库在提高随机、海量小文件频繁读写方面表现优异。
传统关系型数据库采取结构化数据管理方式,优点是数据一致性强,缺点是容差性、并发性较弱。谷歌Big Table和HadoopHBase等新型非关系数据库(NoSQL)通过“键-值”(Key-Value)对、文件等非二维表,提供了处理多源多类非结构化数据的解决方案,由于只关注结果一致性,不追求过程一致性,效率也充分提升。谷歌推出Spanner数据库,可在全球部署100万~1000万台服务器的超大存储系统,通过原子钟进行全局精确同步,在非关系型数据库基础上实现一致性,同时还支持SQL接口,体现两种数据管理技术融合发展的方向。
并行计算关键技术
传统高性能计算的特点是“数据简单、算法复杂”,大数据是典型的数据密集型计算,更重视计算单元和存储单元间的吞吐率。谷歌的MapReduce并行计算技术,通过廉价通用服务器组建系统、添加服务器节点线性扩展系统处理能力,成为应用最为广泛的大数据计算平台。基于MapReduce,业界又发展出多种并行计算技术:一是“边到达边计算”的流计算,如Yahoo的S4和Twitter的Storm;二是针对大规模图数据进行优化的图计算,如谷歌的Pregel;三是将MapReduce内存化以提高实时性的内存批计算, Spark;四是可秒级处理PB级数据的快速交互分析,如谷歌的Dremel。2013年,Hadoop社区推出的将任务调度和资源管理分离、适合多种计算模型的通用MapReduce架构YARN,现已发展成为大数据计算平台的公认标准。
大数据分析技术路线先凭借先验知识人工建立数学模型分析、而后通过大量样本数据进行机器学习。2006 年,谷歌等公司提出增加人工神经网络层数和神经元节点数量,构建深度神经网络以提高训练效果,并在后续试验中得到证实。基于深度神经网络的机器学习技术在语音识别和图像识别等方面取得了较好效果。
工业物联网
工业大数据离不开工业物联网的支撑。第一代工业物联网以模拟信号单向传递为主,布线复杂、抗干扰性差。第二代工业物联网以数字分布式控制系统为代表,信号精度提高但网络实时性和稳定性不足。第三代工业物联网突出现场总线控制,采用全数字、开放式双向通信网络将各控制器与设备互连,而更为便捷、低廉的工业以太网已开始取代现场总线技术。第四代工业物联网的特点是无线传感和通信,突破传统分层控制体系,形成制造、管理、分析、服务的全网一体化架构,同时还具备现场设备感知、实时微处理微计算、微秒级快速响应和复杂环境下稳定传输等能力。
航空电信网
航空电信网(ATN )是基于国际标准公共接口服务和协议,集成地面、地空和航空等多种数据子网,以实现统一数据传输服务的全球空地一体化航空专用通信网络。ATN最大的转变是从面向字符传输到面向比特传输,是未来实现航空大数据实时分析的基础通信保障。ATN主要由通信子网、ATN路由器和终端系统组成。其中ATN通信子网一般由机上子网、空地子网(如甚高频地空数据链、二次雷达S模式、 卫星通信、高频地空数据链等)和地面子网三种形式的数据通信网络组成。而ATN异质网际间的数据传输,则由ATN路由器实现。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18