民机客服工程的大数据应用
大数据技术正深刻影响着民机产业链的上下游,工业大数据缘起国外,在民机领域大数据应用发展较快,而在国内民机客服工程领域也有所突破。
大数据属于数量大 (Volume)、输入和处理速度快 (Velocity)、数据多样性 (Variety)和价值密度低 (Value) 的复杂、海量信息,无法用传统工具处理分析。大数据可分为三类:一是社交类数据,记录用户行为、反馈数据等;二是商业类数据,包括消费者数据、ERP数据、库存数据以及账目数据等;三是工业类数据,又称机器和传感器数据,包括智能仪表、工业设备传感器、呼叫记录、设备日志等。
目前工业大数据形成了以“工业互联网”为代表的美国模式、“工业4.0”为代表的德国模式和“两化融合”、“互联网 ”为代表的中国模式。
工业大数据作为大数据体系的分支,与其既有共通性,又有特殊性。在共通性方面,都是基于海量数据、分析技术和大数据思维三要素,"数据分析师"以预测为核心,以模型和算法为关键。
客服工程数字化的内在驱动是大数据
当前的民用客机研制不但在传统工程技术体系内追求突破创新,更注重从服务客户角度对产品设计方案实施再开发,即“民机客服工程”。客服工程是对产品定义的开发补充,是对产品使用性能的技术创意,它把产品操作和维修等固有特性转化为外在表现,从而构建起产品全生命周期持续安全健康运行的基础。从技术角度看,民机客服工程更多地使用数理统计和逻辑判断工具,更注重大数据在飞行效率、健康管理等领域的应用。
大数据应用的关键技术分析
数据分析师从数据源获取到产生最终价值,一般经过数据的采集准备、存储管理、计算处理、数据分析和知识展现等五个主要环节。相对于传统挖掘技术,大数据分析的技术突破主要集中在存储管理、计算处理和数据分析三个核心环节。在民机应用方面,又涉及工业物联网、航空电信网等关键技术。
"数据分析师"面对海量数据,传统存储技术一方面是存储和计算物理分离、易受I/O瓶颈制约,另一方面是数据数据冗余、扩展、容错和并发读写能力不足。谷歌文件系统(GFS)和Hadoop分布式文件系统(HDFS)在物理上将计算和存储节点结合在一起,避免了数据密集计算时的I/O堵塞;采取分布式存储架构,以提高并发访问能力,在大文件存储上的表现优异。随着应用和需求的发展,内存型数据库在提高随机、海量小文件频繁读写方面表现优异。
传统关系型数据库采取结构化数据管理方式,优点是数据一致性强,缺点是容差性、并发性较弱。谷歌Big Table和HadoopHBase等新型非关系数据库(NoSQL)通过“键-值”(Key-Value)对、文件等非二维表,提供了处理多源多类非结构化数据的解决方案,由于只关注结果一致性,不追求过程一致性,效率也充分提升。谷歌推出Spanner数据库,可在全球部署100万~1000万台服务器的超大存储系统,通过原子钟进行全局精确同步,在非关系型数据库基础上实现一致性,同时还支持SQL接口,体现两种数据管理技术融合发展的方向。
并行计算关键技术
传统高性能计算的特点是“数据简单、算法复杂”,大数据是典型的数据密集型计算,更重视计算单元和存储单元间的吞吐率。谷歌的MapReduce并行计算技术,通过廉价通用服务器组建系统、添加服务器节点线性扩展系统处理能力,成为应用最为广泛的大数据计算平台。基于MapReduce,业界又发展出多种并行计算技术:一是“边到达边计算”的流计算,如Yahoo的S4和Twitter的Storm;二是针对大规模图数据进行优化的图计算,如谷歌的Pregel;三是将MapReduce内存化以提高实时性的内存批计算, Spark;四是可秒级处理PB级数据的快速交互分析,如谷歌的Dremel。2013年,Hadoop社区推出的将任务调度和资源管理分离、适合多种计算模型的通用MapReduce架构YARN,现已发展成为大数据计算平台的公认标准。
大数据分析技术路线先凭借先验知识人工建立数学模型分析、而后通过大量样本数据进行机器学习。2006 年,谷歌等公司提出增加人工神经网络层数和神经元节点数量,构建深度神经网络以提高训练效果,并在后续试验中得到证实。基于深度神经网络的机器学习技术在语音识别和图像识别等方面取得了较好效果。
工业物联网
工业大数据离不开工业物联网的支撑。第一代工业物联网以模拟信号单向传递为主,布线复杂、抗干扰性差。第二代工业物联网以数字分布式控制系统为代表,信号精度提高但网络实时性和稳定性不足。第三代工业物联网突出现场总线控制,采用全数字、开放式双向通信网络将各控制器与设备互连,而更为便捷、低廉的工业以太网已开始取代现场总线技术。第四代工业物联网的特点是无线传感和通信,突破传统分层控制体系,形成制造、管理、分析、服务的全网一体化架构,同时还具备现场设备感知、实时微处理微计算、微秒级快速响应和复杂环境下稳定传输等能力。
航空电信网
航空电信网(ATN )是基于国际标准公共接口服务和协议,集成地面、地空和航空等多种数据子网,以实现统一数据传输服务的全球空地一体化航空专用通信网络。ATN最大的转变是从面向字符传输到面向比特传输,是未来实现航空大数据实时分析的基础通信保障。ATN主要由通信子网、ATN路由器和终端系统组成。其中ATN通信子网一般由机上子网、空地子网(如甚高频地空数据链、二次雷达S模式、 卫星通信、高频地空数据链等)和地面子网三种形式的数据通信网络组成。而ATN异质网际间的数据传输,则由ATN路由器实现。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03