
大数据系列之大数据分析如何权衡存储
在之前,我们已就大数据分析的发展趋势以及对IT资源的需求进行了解析。接下来,数据分析师针对大数据分析的重要一环—存储,中桥将结合市场热门的存储技术如闪存、固态盘等,来从存储性能、数据保护等角度进行分析。
通过前文的相关数据分析,我们已经了解到,随着大数据时代应用数量、应用数据量和使用者数量的增长,系统对存储IOPS以及OLTP和OLAP的要求越来越高。传统存储也越来越无法满足业务关键应用的性能需求,这驱动了中国企业未来24个月新存储的部署。而固态盘、闪存技术作为新型存储,已经得到越来越多的企业的青睐。中桥的调查数据也验证了这一点。企业采用固态盘或闪存技术的主要原因排列如下:提高桌面虚拟化的性能、提高OLAP性能需求、满足业务关键应用性能和低延迟要求、提高虚机密度应用性能等。而桌面虚拟化、OLAP高要求、业务关键应用、低延迟以及高虚拟机密度也正是大数据时代的典型特点。
▲图1. 选择固态盘或闪存技术的主要原因
那么对于中国企业而言,所选择的新型存储技术应该以什么样的指标来权衡,才能确保整个大数据分析流程平稳、高效运行?中桥对企业的调查结果显示(图2),存储高可扩展性、高可用性和并行处理能力是企业评估大数据存储最重要的三个因素。高可扩展性可以确保企业的IT能够随着数据量的增长和性能需求进行扩展,以满足数据分析师对海量数据的存储和处理需求;高可用性则能够保证大数据分析过程的平稳、无间断运行,确保了业务连续性;高并行处理能力则能够确保在大数据处理过程中同时进行更多数据的处理,高效地完成数据分析,从而将分析结果转化为业务决策,加快产品或技术的面市周期。此外,低延迟、自动分层存储以及10GbE支持等也是用户评估大数据存储的重要考核因素。
▲图2 . 评估数据分析存储技术的重要指标
我们再换一个角度来继续解读一下存储。众所周知,不同类型的数据,其生命周期也是不同的,而根据数据类型和生命周期来进行存储资源分配,则能够有效提高存储利用率,这对于大数据的存储开支非常关键。此外,数据的有效管理也决定着生产应用的性能。中桥调查结果显示(图3),大量中国用户所采用的数据库面临着性能压力(84.4%),且没能有效地进行数据的归档和清理,其中,24.6%的受访企业甚至不进行数据归档和清理,还有高达34.9%的受访企业采取手动方式来进行数据归档和清理。将非活跃数据从主存储资源上清理出来,并根据数据类型和生命周期进行分层存储和归档,尽可能提高存储利用率的同时,还能够确保生产应用性能的稳定性,为数据分析提供所需的性能,有效降低主存储开支,延缓存储采购周期。
▲图3. 数据的归档和清理
在大数据时代,海量数据给企业带来的不仅仅是系统性能和存储难题,数据保护也是企业的一大焦点。调研结果显示(图4),用户就面临的数据保护挑战排列如下:“数据备份影响业务性能”(25.1%)、“数据保护网络带宽需求大”(20.7%)、“分级存储读写性能不能满足要求”(19.3%)。这表明,在大数据时代,海量数据的备份和保护以及分级存储,将对业务性能带来很大影响,包括对网络带宽的影响。这也从侧面再一次表明数据的分级存储对企业的重要性。
▲图4大数据数据保护的最大挑战
数据是大数据时代通过IT创造价值的“种子”。数据分析师在大数据分析的四个重要环节中——数据采集和存储、数据清理和整合、数据分析、分析呈现——满足大数据演进过程中对容量、性能和业务连续性的需求,提升资源利用率降低存储开支,不仅能保护好大数据这个“种子”,也是选择大数据存储的重要考虑因素。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18