
大数据系列之大数据分析对IT资源的需求
为了准确描述中国大数据市场和技术发展趋势,解析大数据发展的各阶段对IT技术的需求,2013年6月,中桥调研咨询对中国480家最终用户的IT管理者和专业人员,就大数据市场和技术发展趋势展开了调查。中桥首席分析师"数据分析师"结合其在欧美数据中心领域十几年的市场调研积累,对中国大数据市场趋势的调查数据进行解析,以诠释中国大数据市场和技术趋势。同时,会通过在线讲座(www.webinars-china.com )和中国读者解读中国大数据市场趋势,以及大数据对IT技术、IT架构、IT管理以及IT格局的影响。中桥结合对中国大数据市场的调研数据和分析,将分成四个系列对“中国大数据价值和趋势”进行解读。
在系列1里,中桥就大数据分析对未来24个月以及企业的大数据分析投入重点进行分析。在系列2 里,中桥将就大数据分析对IT资源的需求,包括IT架构、计算节点以及存储技术等进行分析。
大数据分析对IT架构的需求
在大数据时代,随着数据存储量的爆炸性增长以及分层网络架构的出现,IT复杂性达到了前所未有的高度,而大数据分析使得传统IT架构更是不堪重负。那么从企业角度来看,他们的大数据环境需要怎样的IT架构呢?中桥调查结果表明(图1),企业级用户(员工人数在1000人以上)主要选择的是“透明、经济、智能、自动化”的IT架构(29.3%),中小企业(员工人数在1000人以下)则主要选择的是一体机方案(服务器、存储、网络、大数据分析软件)(28.9%)。企业级用户倾向于开放、异构、跨平台的IT架构,因为其用于大数据分析的IT架构发展较为成熟,如何继续提高BI效率是企业级用户选择IT架构的重点。中小企业尚处于IT架构发展初期,因此一体机的方案成为中小企业的首选。受访者的选择结果也体现了中国企业未来对IT架构的需求趋势,说明数据整合和ETL是中国企业的迫切需求,也是目前面临的最大问题之一。
图1. 大数据环境对IT架构的需求
大数据分析对计算技术的需求
再从大数据分析的计算方式来看(图2),21.6%和21.3%的企业级用户分别考虑x86虚拟化和小型机来部署大数据分析方案,中小企业(23.8%)则主要考虑刀片服务器的计算方式。刀片服务器的高密度特点有利于提高计算能力、保持高IT密度。企业级的应用多数运行在小型机的平台上,这造成如果大数据分析是在现有基础上实现,则小型机就成为了企业级的首选;如果要选择在一个全新平台实现大数据分析,那么X86虚拟化就成为了企业级用户的第一选择。结合我们之前所分析的,目前中国市场的大数据分析速度和频率远低于欧美市场,这导致中国企业在数据分析,这个大数据通过IT创造价值,这一重要环节上比较薄弱。
▲图2.大数据分析对计算技术的需求
大数据分析对存储的需求
从大数据分析的第一个环节——数据收集和存储来看,大数据时代应用数量、应用数据量和使用者数量的增长,对存储IOPS以及OLTP和OLAP的要求越来越高,具体体现在存储不能满足业务关键型应用的需求。从数据分析师就企业支持当前数据分析和/或进程活动的存储类型分析来看(图3),FC SAN是企业级用户(42.1%)和中型企业(34.0%)的首选,远高于其他存储类型的企业占比。这是因为FC SAN对OLTP和OLAP的性能稳定性优于其他存储技术。这一调查结果也体现了,目前中国用户大多处于大数据分析的第一阶段,存储和IT架构大多以集中式为主。随着Hadoop和MapReduce的不断普及,用户逐渐进入近实时和实时分析阶段,节点式存储的占比会随之逐渐增加。
▲图3.大数据分析对存储的需求
那么在大数据时代企业的存储能够满足需求呢(图4)?中桥调研结果显示,31.6%的用户计划在未来12个月部署新存储来满足业务关键型应用的需求,33.2%计划在未来12-24个月部署新存储。这表明传统存储越来越无法满足业务关键应用的性能需求。在未来24个月,64.8%的用户将会部署新存储来满足大数据时代,业务关键型应用对存储性能越来越高的需求。
▲图4 大数据分析时代存储的发展趋势
通过上述一系列大数据对IT资源的需求分析,中桥分析师"数据分析师"认为,传统的IT架构、计算方式以及存储正成为中国用户通过大数据分析处理快速提高IT效率,挖掘数据价值的巨大阻碍。而统一、透明、智能的自动化IT架构管理、高密度下卓越的计算能力,以及能够满足存储IOPS与OLTP和OLAP的新型存储则能够为企业创造价值,实现通过IT突破创新来提升企业竞争力的目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04