
每个电商企业都应该分析的九种数据
要想在如今的电商大战中存活下来,每个创业者都需要做好每一件事情,从最基本的搜索引擎优化(SEO)到移动广告。而一些分析工具能够帮助你更好的了解企业的运营情况。
哪些数据应该留意?我们咨询了一些成功的电商创业者,他们分享了他们认为最重要的数据,以及这些数据的作用:
1. 用户获取成本
如果你经营着一个电商企业,但是却不知道每天有多少用户登陆你的网站,登陆用户和完成购买用户之间的比例是多少,以及吸引用户的成本是多少,那么你在这 个行业不会存活太长时间。搜索引擎优化是获取用户的一个好方法,但是仅仅做好搜索引擎优化还不够。有的时候为了吸引更多用户,你必须在金钱上有所付出,而 且你必须清楚的知道哪种方法最能吸引用户。即使在你不得不拒绝用户的时候,你也要清楚的知道拒绝用户的成本。我们"数据分析师"在TuneBash就是这样收集并分析用户数据的,在电商领域有这么一句话:“如果你"数据分析师"不能分析数据,你就不能控制流量。”
– Joseph Ricard, TunebashInc
2. 未完成付款的订单
通过努力的工作,你将用户吸引到了你的网站上。你开始更辛苦的工作,为用户提供他们想要购买的产品。用户们点下了“现在购买”的按钮,然后被重新定向到 付款页面。然后用户突然放弃了购买,到底发生了什么?"数据分析师"通过分析未完成付款的订单,能够让你了解到用户为何最终放弃购买。前一阵,我们发现有一个用户在很短 的一段时间内,放弃购买了5件产品,我们对此十分奇怪。通过调查我们发现,原来是我们的页面不接受来自加拿大的订单。因此,作为一个电商企业,未完成付款 或是用户放弃购买的订单,是你应该进行追踪和分析的数据。
– Brett Farmiloe, Digital Marketing Agency
3. 谷歌分析实验
在谷歌分析(Google Analytics)中,你可以设定多个测试。你可以为多个网页设定目标。有了谷歌分析,你能够对网页做出准确的分析,而不再是凭借经验进行猜测。我强烈建议创业者使用谷歌分析这个工具。它得出的结果往往能够让你大吃一惊。
– Nicolas Gremion, Free-eBooks.com
4. 访客价值
平均每个访客为你带来多少营收?如果你知道这个确切的数字,你就能够将吸引网页流量的成本设定在一个合理的水平上。并且,你还能够通过曾家购买转换率和消费者价值来提供这个数字。
– Joe Barton, Barton Publishing
5. 终身价值
在一段时间内,每个消费者的终身价值以及他们的流量源是一个重要的数据。你能够很轻松的为一个产品设计出推广计划,并将它卖给一个消费者。但是当消费者 数量众多的时候,你又将如何设计出一个优秀的市场营销计划呢?而且你还要同时顾及到新增消费者和旧有消费者,让他们对现在和未来有可能出现的产品产生兴 趣。
– Rob Emrich, PaeDae
6. 流量
很显然你希望那些正在寻找你的网站的消费者能够来到你的网站购物,为你的网站增加流量。但是那些并不是在可以寻找你的用户,同样不可忽视。他们也许正在网上 寻找某一种商品,而你恰好正在销售这种商品,这时你要做的就是将这部分用户吸引过来。用户流量是最能为你带来收入的因素。
– Rameet Chawla, Fueled
7. 投资回报率
很多在线企业开始在网上投放广告,但是他们却并不关注投放广告的投资回报率。通过分析在线广告的投资回报率,你可以知道哪些渠道的广告效果最好,哪些渠道效果不尽如人意,应该不再使用。另外,你还可以对多支广告的效果进行分析,以便在最好的渠道上投放效果最好的广告。
– Patrick Conley, Automation Heroes
8. 购买渠道
除了大家都在分析的CPA(每购买成本)之外,我们还会专注于分析用户的购买渠道。了解用户在哪里找到了我们,并进入购买程序。这一点十分重要。如果不能够很好的对此数据进行分析,你就无法对用户的购买转换行为进行优化和提高。
– Adam Cunningham, 87AM
9. 移动设备访问比率
如果到现在你还没有针对移动设备进行优化的网页,那你就有大麻烦了。很多公司每个月都会针对移动网页使用情况制作报告,我们"数据分析师"惊讶的发现,在所有访问我们 网站的用户中,接近20%来自智能手机和平板电脑等移动设备。因此你"数据分析师"应该分析一下有多少用户在使用移动设备浏览你的网页,为所有移动设备创造一个优秀的浏 览和购物体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01