京公网安备 11010802034615号
经营许可证编号:京B2-20210330
每个电商企业都应该分析的九种数据
要想在如今的电商大战中存活下来,每个创业者都需要做好每一件事情,从最基本的搜索引擎优化(SEO)到移动广告。而一些分析工具能够帮助你更好的了解企业的运营情况。
哪些数据应该留意?我们咨询了一些成功的电商创业者,他们分享了他们认为最重要的数据,以及这些数据的作用:
1. 用户获取成本
如果你经营着一个电商企业,但是却不知道每天有多少用户登陆你的网站,登陆用户和完成购买用户之间的比例是多少,以及吸引用户的成本是多少,那么你在这 个行业不会存活太长时间。搜索引擎优化是获取用户的一个好方法,但是仅仅做好搜索引擎优化还不够。有的时候为了吸引更多用户,你必须在金钱上有所付出,而 且你必须清楚的知道哪种方法最能吸引用户。即使在你不得不拒绝用户的时候,你也要清楚的知道拒绝用户的成本。我们"数据分析师"在TuneBash就是这样收集并分析用户数据的,在电商领域有这么一句话:“如果你"数据分析师"不能分析数据,你就不能控制流量。”
– Joseph Ricard, TunebashInc
2. 未完成付款的订单
通过努力的工作,你将用户吸引到了你的网站上。你开始更辛苦的工作,为用户提供他们想要购买的产品。用户们点下了“现在购买”的按钮,然后被重新定向到 付款页面。然后用户突然放弃了购买,到底发生了什么?"数据分析师"通过分析未完成付款的订单,能够让你了解到用户为何最终放弃购买。前一阵,我们发现有一个用户在很短 的一段时间内,放弃购买了5件产品,我们对此十分奇怪。通过调查我们发现,原来是我们的页面不接受来自加拿大的订单。因此,作为一个电商企业,未完成付款 或是用户放弃购买的订单,是你应该进行追踪和分析的数据。
– Brett Farmiloe, Digital Marketing Agency
3. 谷歌分析实验
在谷歌分析(Google Analytics)中,你可以设定多个测试。你可以为多个网页设定目标。有了谷歌分析,你能够对网页做出准确的分析,而不再是凭借经验进行猜测。我强烈建议创业者使用谷歌分析这个工具。它得出的结果往往能够让你大吃一惊。
– Nicolas Gremion, Free-eBooks.com
4. 访客价值
平均每个访客为你带来多少营收?如果你知道这个确切的数字,你就能够将吸引网页流量的成本设定在一个合理的水平上。并且,你还能够通过曾家购买转换率和消费者价值来提供这个数字。
– Joe Barton, Barton Publishing
5. 终身价值
在一段时间内,每个消费者的终身价值以及他们的流量源是一个重要的数据。你能够很轻松的为一个产品设计出推广计划,并将它卖给一个消费者。但是当消费者 数量众多的时候,你又将如何设计出一个优秀的市场营销计划呢?而且你还要同时顾及到新增消费者和旧有消费者,让他们对现在和未来有可能出现的产品产生兴 趣。
– Rob Emrich, PaeDae
6. 流量
很显然你希望那些正在寻找你的网站的消费者能够来到你的网站购物,为你的网站增加流量。但是那些并不是在可以寻找你的用户,同样不可忽视。他们也许正在网上 寻找某一种商品,而你恰好正在销售这种商品,这时你要做的就是将这部分用户吸引过来。用户流量是最能为你带来收入的因素。
– Rameet Chawla, Fueled
7. 投资回报率
很多在线企业开始在网上投放广告,但是他们却并不关注投放广告的投资回报率。通过分析在线广告的投资回报率,你可以知道哪些渠道的广告效果最好,哪些渠道效果不尽如人意,应该不再使用。另外,你还可以对多支广告的效果进行分析,以便在最好的渠道上投放效果最好的广告。
– Patrick Conley, Automation Heroes
8. 购买渠道
除了大家都在分析的CPA(每购买成本)之外,我们还会专注于分析用户的购买渠道。了解用户在哪里找到了我们,并进入购买程序。这一点十分重要。如果不能够很好的对此数据进行分析,你就无法对用户的购买转换行为进行优化和提高。
– Adam Cunningham, 87AM
9. 移动设备访问比率
如果到现在你还没有针对移动设备进行优化的网页,那你就有大麻烦了。很多公司每个月都会针对移动网页使用情况制作报告,我们"数据分析师"惊讶的发现,在所有访问我们 网站的用户中,接近20%来自智能手机和平板电脑等移动设备。因此你"数据分析师"应该分析一下有多少用户在使用移动设备浏览你的网页,为所有移动设备创造一个优秀的浏 览和购物体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01