
数据中心里 三类数据特征分析
数据中心承载的业务种类多种多样,比如:支付、监控、管理、网站、数据分析等等,数据中心几乎无所不能。纵然这些业务形式相差迥异,但是本质上都是数据,这正是数据中心的核心特征,之所以叫数据中心,就是因为是处理数据的中心,数据中心的所有系统都是围绕着各种数据展开的,有专门对数据进行研究的技术,比如数据挖掘、数据分析师,大数据、人工智能等数据分析技术,通过对数据进行分析、整理,将可以获得数据以外更有价值的东西。尤为重要的是通过对现有业务进行数据分析,包括其细致的应用所占带宽比例,使用频度,未来的增长趋势等。充分了解当前各业务,特别是构成复杂的数据业务,将对数据中心网络优化、扩容、新建等工程实施特别有益。
数据中心的数据可以有多种分类形式,比如按照应用业务来区分:游戏、VoIP、音乐、文件传送、Email、视频等;也可以按照报文长度来分区:63字节、64~511字节、512~1023字节、1024字节以上等;还有一种最为普遍的分类办法就是可以分为:语音、视频和数据,最后一种分类办法对于数据中心网络分析最有用。不难分析,数据中心里的所有应用业务数据都可以分为语音、视频和数据三大类。下面就来详细说说这三类数据的特征,根据这些数据的特征可以有效地对数据中心网络调整,以便可以更好地为这些数据服务。
语音数据
我们平时的说话、听到的各种音乐、噪音等都是语音。语音的特点是平滑,良性的并可以预测。语音数据对丢弃和延迟极为敏感,如果丢弃量比较大,语音听起来就会断断续续,听不清楚,杂音也比较多,如果网络延迟比较大,语音就产生回声。所以数据中心要承载语音数据业务,就需要在延迟和丢弃率方面达到一定要求。一般承载语音业务,要求数据中心网络的延迟要小于150MS,抖动小于30MS,丢弃率小于1%,这样才能保证数据中心网络可传输高质量的语音数据,语音数据一般使用RTP或者UDP 协议传输。
视频数据
视频数据这几年增长飞快,几乎超过了其它数据流量的总和。视频数据量大,包含的内容丰富,显示直观,所以很多应用系统都喜欢使用视频数据。视频数据有一定的突发性,非良性喜好冒进,同样对丢弃和延迟敏感,像很多的高清视频,为保证清晰度,需要很低的丢弃率。{cda数据分析师}现在3D甚至4D大片都不断出现,这样的一个大片就要7到8个G的硬盘空间,传输起来数据量特别大,希望缩短传输的时间,就需要高容量高带宽的数据中心网络。同时视频数据要求数据中心网络的延迟要在150MS以下,抖动小于30MS,丢包率低于1%,一般使用RTP或者UDP 协议传输,视频数据需要较高的网络带宽和大容量的存储硬盘,有些实时在线播放的视频业务,尤其需要高容量的数据中心网络。
普通数据
数据应用种类就太多了,不同应用有不同的流量特征,同一应用的不同版本可能都有巨大的流量特征差异。这类数据的特征是既有平滑也有突发,既有守约也有冒进,不过一般这类数据对延迟和丢弃不敏感。这些数据基本都采用TCP 协议处理方式,TCP 协议有完善的重传机制,当发现有丢包时,会进行TCP 多次重传,这种机制确保了即使网络有丢包,也可以通过重传的方式来补救。当然这种有丢包的网络,会造成大量的TCP重传报文,重传的报文也占流量,自然又加重了网络拥塞,反而可能造成网络丢包率更高,这样有这种重传机制也并不一定就好了。
偶尔的TCP重传没有什么影响,但是如果重传报文数量极多,就会加重网络拥塞,这种机制起了反作用。数据业务其实是非常复杂的,我们并不好去给它下一个特征定义,有的要求高带宽(有大数据分析业务),有的要求大缓存(有突发数据业务),有的要求低延迟(互联网搜索业务),有的要求零丢包(银行支付系统),所以不同的数据对网络的要求是不一样的,这样就需要有区别地对待,在不同的网络环境中来运行不同的业务系统。数据中心网络有丰富的数据分类和标识技术,通过这些技术可以根据不同数据的特征,选择走不同的网络路径,甚至还可以设置优先级,这些技术就好像是交通系统,可以让去往不同地方的车辆走在最适合自己的道路上,同时还可以对救护车、警车等车辆给予高的优先级,允许先通过,不受交通指示灯和管制的限制。
语音、视频和数据是数据中心承载的所有业务的三大类数据,困难之处在于,有时这三类数据在一个数据中心网络里同时存在,而这三类数据对数据中心网络的要求又是不同的,怎样一一去满足,考验着数据中心网络技术人员的智慧。很多时候,甚至要在某些业务上做些牺牲,来保证重要的业务正常运行,这是一个比较复杂的设计工程,并且需要不断地实践和测试。我们常说的网络服务质量保证,即QoS技术就是实现数据之间融合的最为关键的技术,想要让语音、视频、数据在一个数据中心网络里和平共存,就需要部署QoS技术,QoS技术可以在带宽、延迟、抖动和丢包率方面做出各种各样的指导策略,还可以按照业务的重要性标识权重,并要求三大类数据都要遵守,从而确保三类数据在一个数据中心网络里可以和平相处,各自运行着自己的应用业务,互不影响。
数据分析师会把重要的数据可以得到优先处理,量大的数据可以得到较高的网络带宽,各取所需,共同发展。认真领会了数据中心这三类数据的特征非常必要,根据数据特征将可以有针对性地部署QoS策略,为这些数据提供一个最适宜的数据中心网络环境。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14