
数据中心里 三类数据特征分析
数据中心承载的业务种类多种多样,比如:支付、监控、管理、网站、数据分析等等,数据中心几乎无所不能。纵然这些业务形式相差迥异,但是本质上都是数据,这正是数据中心的核心特征,之所以叫数据中心,就是因为是处理数据的中心,数据中心的所有系统都是围绕着各种数据展开的,有专门对数据进行研究的技术,比如数据挖掘、数据分析师,大数据、人工智能等数据分析技术,通过对数据进行分析、整理,将可以获得数据以外更有价值的东西。尤为重要的是通过对现有业务进行数据分析,包括其细致的应用所占带宽比例,使用频度,未来的增长趋势等。充分了解当前各业务,特别是构成复杂的数据业务,将对数据中心网络优化、扩容、新建等工程实施特别有益。
数据中心的数据可以有多种分类形式,比如按照应用业务来区分:游戏、VoIP、音乐、文件传送、Email、视频等;也可以按照报文长度来分区:63字节、64~511字节、512~1023字节、1024字节以上等;还有一种最为普遍的分类办法就是可以分为:语音、视频和数据,最后一种分类办法对于数据中心网络分析最有用。不难分析,数据中心里的所有应用业务数据都可以分为语音、视频和数据三大类。下面就来详细说说这三类数据的特征,根据这些数据的特征可以有效地对数据中心网络调整,以便可以更好地为这些数据服务。
语音数据
我们平时的说话、听到的各种音乐、噪音等都是语音。语音的特点是平滑,良性的并可以预测。语音数据对丢弃和延迟极为敏感,如果丢弃量比较大,语音听起来就会断断续续,听不清楚,杂音也比较多,如果网络延迟比较大,语音就产生回声。所以数据中心要承载语音数据业务,就需要在延迟和丢弃率方面达到一定要求。一般承载语音业务,要求数据中心网络的延迟要小于150MS,抖动小于30MS,丢弃率小于1%,这样才能保证数据中心网络可传输高质量的语音数据,语音数据一般使用RTP或者UDP 协议传输。
视频数据
视频数据这几年增长飞快,几乎超过了其它数据流量的总和。视频数据量大,包含的内容丰富,显示直观,所以很多应用系统都喜欢使用视频数据。视频数据有一定的突发性,非良性喜好冒进,同样对丢弃和延迟敏感,像很多的高清视频,为保证清晰度,需要很低的丢弃率。{cda数据分析师}现在3D甚至4D大片都不断出现,这样的一个大片就要7到8个G的硬盘空间,传输起来数据量特别大,希望缩短传输的时间,就需要高容量高带宽的数据中心网络。同时视频数据要求数据中心网络的延迟要在150MS以下,抖动小于30MS,丢包率低于1%,一般使用RTP或者UDP 协议传输,视频数据需要较高的网络带宽和大容量的存储硬盘,有些实时在线播放的视频业务,尤其需要高容量的数据中心网络。
普通数据
数据应用种类就太多了,不同应用有不同的流量特征,同一应用的不同版本可能都有巨大的流量特征差异。这类数据的特征是既有平滑也有突发,既有守约也有冒进,不过一般这类数据对延迟和丢弃不敏感。这些数据基本都采用TCP 协议处理方式,TCP 协议有完善的重传机制,当发现有丢包时,会进行TCP 多次重传,这种机制确保了即使网络有丢包,也可以通过重传的方式来补救。当然这种有丢包的网络,会造成大量的TCP重传报文,重传的报文也占流量,自然又加重了网络拥塞,反而可能造成网络丢包率更高,这样有这种重传机制也并不一定就好了。
偶尔的TCP重传没有什么影响,但是如果重传报文数量极多,就会加重网络拥塞,这种机制起了反作用。数据业务其实是非常复杂的,我们并不好去给它下一个特征定义,有的要求高带宽(有大数据分析业务),有的要求大缓存(有突发数据业务),有的要求低延迟(互联网搜索业务),有的要求零丢包(银行支付系统),所以不同的数据对网络的要求是不一样的,这样就需要有区别地对待,在不同的网络环境中来运行不同的业务系统。数据中心网络有丰富的数据分类和标识技术,通过这些技术可以根据不同数据的特征,选择走不同的网络路径,甚至还可以设置优先级,这些技术就好像是交通系统,可以让去往不同地方的车辆走在最适合自己的道路上,同时还可以对救护车、警车等车辆给予高的优先级,允许先通过,不受交通指示灯和管制的限制。
语音、视频和数据是数据中心承载的所有业务的三大类数据,困难之处在于,有时这三类数据在一个数据中心网络里同时存在,而这三类数据对数据中心网络的要求又是不同的,怎样一一去满足,考验着数据中心网络技术人员的智慧。很多时候,甚至要在某些业务上做些牺牲,来保证重要的业务正常运行,这是一个比较复杂的设计工程,并且需要不断地实践和测试。我们常说的网络服务质量保证,即QoS技术就是实现数据之间融合的最为关键的技术,想要让语音、视频、数据在一个数据中心网络里和平共存,就需要部署QoS技术,QoS技术可以在带宽、延迟、抖动和丢包率方面做出各种各样的指导策略,还可以按照业务的重要性标识权重,并要求三大类数据都要遵守,从而确保三类数据在一个数据中心网络里可以和平相处,各自运行着自己的应用业务,互不影响。
数据分析师会把重要的数据可以得到优先处理,量大的数据可以得到较高的网络带宽,各取所需,共同发展。认真领会了数据中心这三类数据的特征非常必要,根据数据特征将可以有针对性地部署QoS策略,为这些数据提供一个最适宜的数据中心网络环境。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10