
数据分析师看了这个故事,你还有什么理由不努力?
有位知乎题主提出了这样一个问题:“贫穷无法改变吗?”
题主的问题阐释很长,大意是自己从小在一个落后的小城镇长大,考入大学之后感觉自己的见识和眼界不如同学,很自卑,从而变得自负,不仅自己不努力,还看不起努力学习成绩好的同学。后来读了本校的研究生,毕业之后就到北京找工作,但在与同事的相处中依然感觉自卑,无法改变贫穷在自己身上留下的烙印。
而在下面的回复里,有人讲了一个故事,得到了上万的赞同。读过这个故事,小编只想说,我们有什么理由不努力?
想给大家讲一个真实的故事,从一张照片讲起。
这是我的博士同事,Naphet,10月20日下午3点,他正式打出了他的博士论文,完成了四年的博士生涯。
Naphet 来自津巴布韦,世界上最混乱的国家之一(也许没有之一)。他没有谈他的童年,但我知道那一定不是我可以相比的。他从家乡出来后,成功地申请到了我们学校的 PhD,并且获得了英国国籍。这中间的努力,真的是我难以想象的。我至今深深记得,他去参加他的博士论文答辩的那天,抱着一本300多页厚厚的博士论文,像抱着一个婴儿那么珍惜。他的论文做定量的,主要工具是spss 程序,我曾经问过他从哪里学的 spss,他和我说,他在网上自学的。在读博的三年时间里,他就通过看 Youtube 的在线视频来从0开始学习 spss,如今,他的论文里充斥着各种精致的公式,而我的论文相比之下是如此的苍白无力。但他的论文还是没有通过答辩,因为我们学校新来的一个女老师质疑了他的方法,他很愤怒,因为他不理解为什么自己学校的老师竟然不支持他,但他没有气馁,而是继续每天早出晚归地来研究室修改论文。
他是有两个孩子的单亲爸爸。女儿已经上了高中,儿子才几个月大。他白天要在家里带孩子,晚上到火车站开出租车补贴学费和家用,挣来的钱还要寄回津巴布韦老家。因此他白天在家里通过远程桌面连接学校电脑学习{数据分析师培训},只有在晚上五点以后,他的女儿放学回来能照顾自己的弟弟,以及出租下班的时候才能来研究室学习。他周末的时候从来不回家,睡在出租车里,这样能多挣钱。而他一旦坐下,就会一动不动地全神贯注地开始工作。我有时候都很奇怪他从哪里来的精力,能够一边打工一边学习,并且能够如此专注。每每午夜十二点半,我离开研究室,而他仍然坐在电脑屏幕面前,专心调整着他公式的参数。
Naphet 的女儿非常优秀,她6岁的时候来到他身边。他充满自豪地同我分享了她女儿在 BBC 演讲比赛中获胜的演讲,并且告诉我她是英国青少年议会的议员,教区领袖,学校青少年协会的领导。“她的生活非常自律,比我更加自律,我从来没见过一个哪个17岁的孩子能够像她那么生活。”他对我说。在他女儿十五岁参加的那场演讲中,她把英语称之为杀手,并且分析了外国移民在英文环境中面对的语言困境。“我没有写一个字给她,都是她自己写的。我把这个视频用到了我的课程’社会学的想象力’中,这是一个可以作为博士论文的课题。”Naphet 非常自豪地对我说。我真的很震惊一个十五岁的女孩能够对环境有如此的敏感性。我提醒 Naphet 不要让她过于骄傲,他和我说:“我从来不夸奖她,我只是告诉她需要面对的挑战。她能够完成每一项挑战。”
他曾和我分享了他求职失败的经历,原因竟然是他过于优秀。三年博士期间,他获得了多个教师资格证书,比他的面试官还要优秀。结果可想而知,他精心准备的演讲反而害了他,实在是十分荒谬。但他没有气馁,他和我说:“我目前需要做的就是尽快博士毕业,好让自己有更多的自由去寻找更好的机会。”
他的教学经验之丰富,远远超过了他的同辈,连他的面试官也只能嫉妒地说:“你实在是走的太快了。”我问他关于论文引用的问题,他却反过来向我求教我使用的引用软件,等我介绍完之后他掏出本子认真的记录着:“这个软件很好,我以后也要让我女儿试试。我现在就在为她准备大学需要面临的一切。”那一刻,我真的感觉到为什么人们说机会都是留给有准备的人。什么样的人是优秀的人?自强,自律,虚心,不骄不躁,永远充满信心,这样的父亲有这样的女儿,一点也不奇怪。
人在海外,社交圈很小,因此他给我的触动反倒更大。我第一次认真思考了何为一个有担当的男人。他没有钱,所以出去工作,他没有知识,所以上网自学。{数据分析师}他面对着所有的不公正,却充满了自信的微笑。他对我说:“我要尽快完成我的博士,向我女儿证明我可以做到这一切。”是的,他一定可以的,我一点都不怀疑。反观我自己,在每一点上都放佛要被压榨出一个大大的“小”字来,我连对比的勇气都没有。他那岩石一般英朗的笑容背后有多少辛酸,多少委屈,我无法猜测,但我看到的是,他如同钟表一样准时的每天来到研究室,坐下,学习,创造着属于他和他女儿的未来。
他在论文的致谢部分写着:“献给我的母亲和我的四个兄弟,献给我过世的爸爸和五个叔叔。”
“我已经很多年没见过我母亲了。”他看着我读完了致谢之后说。
“你是怎么走过这一切的呢?”我问。
“压力。生活挤压着你,你只有前进。我所获得的一切都是靠我自己的双手得来的。”
他,是他们五兄弟中唯一走出来的。
很多时候,Naphet 这样的人是学不来的,但我想,他本身也许就是一个答案,在我们陷入迷茫和懦弱时,在我们给自己的人生拼命找借口时,带来一个声音:
贫穷不能改变吗?
能。
(以下为答主后期的补充回复)
感谢大家的热情评论,针对一些问题统一回复一下:
1. 我写的都是我了解的。至于他在津巴布韦的家里是否有钱有地位,我不清楚,但是我清楚的是,他是夜班出租司机还要往家里寄钱,他是家里唯一走出来的。也许他家在津巴布韦混的很好呢?也许津巴布韦就是治安稳定人民安居乐业的天堂呢?有可能,但这并不影响,也不应该影响我们对他的判断。因为他在英国过的的确是贫穷的日子,也的确是从这贫穷中成就了博士。
2010年,福布斯杂志将津巴布韦列为世界上最危险的国家之一。
2. spss 不是什么高上大的工具,自学并没什么了不起的,我认为的确如此,但我也很佩服他,因为自学到写出博士论文的程度,还是挺了不起的。
3. 我认为他最了不起的地方是作为一个两个孩子的单亲父亲的地方。一个大男人又读博又带孩子,还是带婴儿,我实在想象不出他怎么熬过来的。他开出租还是夜班的,从晚上7点到凌晨3点,就是为了能腾出白天的时间来照看孩子。
4. 《社会学的想象力》是他教的课,不是他写的书。
5. 评论里有人提出他的工作时间的矛盾,我做了修正。他白天在家用电脑连学校的电脑工作,顺便带孩子,下午女儿放学后过来学校学一会,然后工作到凌晨,然后再回来学或者回家休息。
6. 评论里有人质疑具体他获得了多少教师资格,我将原答案的5个修改为多个,免得引起争议。
7. 找工作失败的原因很复杂,每个人的想法不同,我具体是听他转述的,他应该属于符合要求但竞争力没有强到无法拒绝的地步(比如有发表论文)。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29