京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据标准化的原因及方法
前段时间有几个和我一样学习数据分析师的朋友聊天,说到数据标准化的原因和方法。下面我们就具体的解释一下?
一、为何要将数据标准化?
由于不同变量常常具有不同的单位和不同的变异程度。不同的单位常使系数的实践解释发生困难。例如:第1个变量的单位是kg,第2个变量的单位是cm,那么在计算绝对距离时将出现将两个事例中第1个变量观察值之差的绝对值(单位是kg)与第2个变量观察值之差的绝对值(单位是cm )相加的情况。使用者会说5kg的差异怎么可以与3cm的差异相加?
不同变量自身具有相差较大的变异时,会使在计算出的关系系数中,不同变量所占的比重大不相同。例如如果第1个变量(两水稻品种米粒中的脂肪含量)的数值在2%到4%之间,而第2个变量(两水稻品种的亩产量)的数值范围都在1000与5000之间。为了消除量纲影响和变量自身变异大小和数值大小的影响,故将数据标准化。
二、数据标准化的方法:
1、对变量的离差标准化
离差标准化是将某变量中的观察值减去该变量的最小值,然后除以该变量的极差。即
x’ik=[xik -Min (xk)]/Rk
经过离差标准化后,各种变量的观察值的数值范围都将在〔0,1〕之间,并且经标准化的数据都是没有单位的纯数量。离差标准化是消除量纲(单位)影响和变异大小因素的影响的最简单的方法。 有一些关系系数(例如绝对值指数尺度)在定义时就已经要求对数据进行离差标准化,但有些关系系数的计算公式却没有这样要求,当选用这类关系系数前,不妨先对数据进行标准化,看看分析的结果是否为有意义的变化。
2,对变量的标准差标准化
标准差标准化是将某变量中的观察值减去该变量的平均数,然后除以该变量的标准差。即
x’ik = (xik - )/sk
经过标准差标准化后,各变量将有约一半观察值的数值小于0,另一半观察值的数值大于0,变量的平均数为0,标准差为1。经标准化的数据都是没有单位的纯数量。对变量进行的标准差标准化可以消除量纲(单位)影响和变量自身变异的影响。但有人认为经过这种标准化后,原来数值较大的的观察值对分类结果的影响仍然占明显的优势,应该进一步消除大小因子的影响。尽管如此,它还是当前用得最多的数据标准化方法。
3,先对事例进行标准差标准化,再对变量进行标准差标准化
第一步,先对事例进行标准差标准化,即将某事例中的观察值减去该事例的平均数,然后除以该事例的标准差。即
x’ik = (xik - )/si
第二步,再对变量进行标准差标准化,即将某变量中的观察值减去该变量的平均数,然后除以该变量的标准差。即
x’’ik = (x’ik - ’k)/s’k
使用这种标准化的目的也在于消除性状间的量纲(单位)影响和变异大小因子的影响,使性状间具有可比性。
4,先对变量、后对事例、再对变量的标准差标准化
这种标准化的目的也在于消除性状间的量纲(单位)影响和变异大小因子的影响,使性状间具有可比性。具体做法是:
第一步,先对变量进行标准差标准化,即将某变量中的观察值减去该变量的平均数,然后除以该变量的标准差。即
x’ik = (xik - )/sk
第二步,后对事例进行标准差标准化,即将某事例中的观察值减去该事例的平均数,然后除以该事例的标准差。即
x’’ik = (x’ik - ’i)/s’i
第三步,再对变量进行标准差标准化,即将某变量中的观察值减去该变量的平均数,然后除以该变量的标准差。即
x’’’ik = (x’’ik - ’’k)/s’’k
进行了前两步之后,还要进行第三步的原因,主要是为了计算的方便。
在数据分析过程中,我们经常需要对数据进行标准化(normalization),数据标准化主要功能就是消除变量间的量纲关系,从而使数据具有可比性。可以举个简单的例子,一个百分制的变量与一个5分值的变量在一起怎么比较?只有通过数据标准化,都把它们标准到同一个标准时才具有可比性。即通过将属性数据按照比例缩放,使之落入一个小的特定区间,如[-1,+1]、[0,1]等,以进一步分析数据的属性。
有许多中数据标准化方法,常用的有最小-最大标准化、Z-score标准化和按小数定标标准化等。下面对数据标准化的常用方法进行了介绍:
一、Min-Max标准化
min-max标准化方法是对原始数据进行线性变换。设minA和maxA分别为属性A的最小值和最大值,将A的一个原始值x通过min-max标准化映射成在区间【0,1】中的值,其公式为:
新数据=(原数据-极小值)/(极大值-极小值)
这种方法适用于原始数据的取值范围已经确定的情况。
例如:假定属性income的最小与最大值分别为$12,000和$98,000。我们想映射income到区间[0,1]。根据min-max标准化,incom值$73,600将变换为
(73,600-12,000)/(98,000-12,000)×(1-0)=0.716。
二、z-score标准化
这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将属性A的原始值v使用z-score标准化到v’的计算方法是:
新数据=(原数据-均值)/标准差
z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。
spass的默认的标准化方法就是z-score标准化。
用Excel进行z-score标准化的方法:在Excel中没有现成的额函数,需要自己分步计算,其实标准化的公式很简单。
步骤如下:
1、求出各变量(指标)的算术平均值(数学期望)xi和标准差si
2、进行标准化处理:zij=(xij-xi)/si。其中:zij为标准化后的变量值;xij为实际变量值。
3、将逆指标钱的正负号对调。标准化后的变量值围绕0上下波动,大雨0说明高于平均水平,小于0说明低于平均水平。
三、Decimal scaling(小数定标标准化)
这种方法通过移动数据的小数点位置来进行标准化。小数点移动多少位取决于属性A的取值中的最大绝对值。将属性A的原始值x使用decimal scaling标准化到y’的计算方法是:y=x/(10*j) 其中,j是满足条件的最小整数。
例如 假定A的值由-986到917,A的最大绝对值为986,为使用小数定标标准化,我们用1000(即,j=3)除以每个值,这样,-986被规范化为-0.986。
注意,标准化会对原始数据做出改变,因此需要保存所使用的标准化方法的参数,以便对后续的数据进行统一的标准化。数据分析师认证培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27