京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文 | 林超
本文获得作者授权发布
林超
厅客app联合创始人&CEO
成功创办过三家高科技和互联网消费类公司,中山大学数学和金融双学位,在厅客的第二职业是:人类学家。厅客目前获得PreA 数千万人民币融资。在1月8日举办的2016大数据生态纵览峰会·共享经济分论坛上,林超分享了他关于共享经济在中国应用的观点。本文是他主要观点的集中体现,收录在此,以飨读者。
最近CCTV财经频道制作了一期共享经济的节目,节目提到“共享经济正在从一个新鲜事物变成我们生活的一部分,一个新时代被开启了”。共享经济的话题在中国又热起来了。这一次,可能不再是虚火。
那么,共享经济在中国该如何落地?
首先,共享经济在美国是个环保问题,但在中国却是个再就业和挣外快的问题,那么发源自美国的共享经济成功模式迁移到中国来适用吗?
我们先来看下面两张图。
第一张是《经济学人》杂志某一期专门探讨共享经济主题的封面:

从这张图里面,我们可以看到美国人是怎么理解共享经济的。
总结起来,我们看到了两样东西:
第二:东西很多

第二,在中国落地就要抓住中国特色的机会
那么,中国的劳动力市场到底有什么主要特征呢?如果你是一个共享经济的创业者,那么这里有三个维度可以帮助你更好的理解中国的独特性。
城市维度
我们可以把中国的城市抽象成:乡镇、四线城市、三线城市、二线城市、一线城市,五个层次。

学历维度
中国的劳动人口的学历维度可以分为:小学学历,初中学历,高中学历,大专与普通大学学历,211/985大学学历。

年龄维度
年龄是一个至关重要的维度,信息文明高速发展推动的年龄代际更迭使得每个年龄层的互联网使用者都表现出完全不同的行为模式。所以,我们先粗略的把用户分为50后、60后、70后、80后、90后。
把这三个维度组织起来我们可以得出一个三维的劳动力人群划分图:
上图,实际上就是我们理解中国人口国情的一张藏宝图,三个维度分别切分成五个类别,5的三次方,可以划分125个区间,每个区间的劳动力激活都可能产生机会。
比如,我们可以举个例子:达达快递是利用移动互联网的能力,成功的激活了在一二三线城市居住的,80、90后,中专及以下的劳动力的碎片化时间挣外快问题。
回家吃饭便是满足了一二线城市居住的,50、60后,中专及以下的劳动力再就业需求。
厅客则是满足了一二线城市居住的,80、90后,大专及以上劳动力的探索人生另一种工作方式的需求。
第三,分清你的产品是需求场景,还是需求品类
做共享经济到底是“选择品类”重要,还是“锁定场景”更加重要。要理解这个问题,我们需要引入一个概念,就是引力。
重资产品类”引力强,围绕自身形成场景;“轻资产品类”引力弱,需要围绕场景构建品类。
比如,我们可以说 uber 捕捉的是打车需求产生的前后5分钟的场景。Airbnb捕捉的是在旅行中最关键的住宿选购的场景。
他们的区别在于前者是从使用者的视角看问题,后者是从被使用的物品为视角看问题。
两种不同的视角取决于品类的轻重。 比如,房子非常重,车子非常重,孩子非常重,所以围绕他们就容易形成围绕场景。但是,灯泡很轻,凳子很轻,电钻很轻,吃个便饭很轻,所以这些往往会融入到其他的场景中。
当你切入共享经济类别相对轻的时候,品类自身的引力不够形成周边场景,这个时候你就要转化思路,主动融入其他场景考虑问题。
比如“Enjoy”从高体验餐饮场景切入,构建了一个体验经济的核心场景,从而逐渐切入其他零食,甚至手工艺品就显得顺理成章。而“觅食”选择了覆盖所有饮食场景的全品类切入方式,反而有可能让用户觉得无所适从,最终只使用其最核心的一到两个场景,使得其他场景枯萎。
或者,如果你是做个人手艺的共享经济,那么你提供的共享服务层次和类别差异可能非常大。比如你提供主要是按摩、美甲、身体护理类的服务共享经济,这就是一个轻品类,它其实隶属于多个完全不同的场景,比如办公室场景、家庭上门服务场景、周末姐妹聚会场景。服务于不同的产品完全可以形成彻底不同的产品形态。
第四,看清打开频次与传播率之间的关系
作为一个交易平台,高频打低频的理论相信大家也是耳熟能详。
不过,到底为什么高频产品可以侵蚀低频产品呢?
这个可以看成是一个进化生物学问题,不过最终还是一个数学问题。
理查德.道金斯在他的著作《自私的基因》里面对于原始海洋中基因间如何竞争有过精彩的描述。进一步用数学来解释就是,如果有AB两个产品:
A产品用户体验非常好,用户满意度极高,每次使用都能产生200%的传播,但它一个月的时间只有5次用户打开。
B产品用户体验做的一般,用户满意度一般,每次使用只能产生5%的传播,但是它用户打开频率很高,一个月能打开200次。
那么一个月后,A产品传播结果为243,而B产品的传播结果则是惊人的17292。
所以,一个自我复制频率高但是每次复制能力低的产品,会胜过一个自我复制频率低但是每次复制能力强的产品。

以上四点即是我对于“共享经济如何在中国落地”的一些看法。正如央视财经频道所说,共享经济在中国已不是新鲜话题,它将越来越成为我们生活的一部分,我们也会进入一个全新的经济共享时代。
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24