京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文 | 林超
本文获得作者授权发布
林超
厅客app联合创始人&CEO
成功创办过三家高科技和互联网消费类公司,中山大学数学和金融双学位,在厅客的第二职业是:人类学家。厅客目前获得PreA 数千万人民币融资。在1月8日举办的2016大数据生态纵览峰会·共享经济分论坛上,林超分享了他关于共享经济在中国应用的观点。本文是他主要观点的集中体现,收录在此,以飨读者。
最近CCTV财经频道制作了一期共享经济的节目,节目提到“共享经济正在从一个新鲜事物变成我们生活的一部分,一个新时代被开启了”。共享经济的话题在中国又热起来了。这一次,可能不再是虚火。
那么,共享经济在中国该如何落地?
首先,共享经济在美国是个环保问题,但在中国却是个再就业和挣外快的问题,那么发源自美国的共享经济成功模式迁移到中国来适用吗?
我们先来看下面两张图。
第一张是《经济学人》杂志某一期专门探讨共享经济主题的封面:

从这张图里面,我们可以看到美国人是怎么理解共享经济的。
总结起来,我们看到了两样东西:
第二:东西很多

第二,在中国落地就要抓住中国特色的机会
那么,中国的劳动力市场到底有什么主要特征呢?如果你是一个共享经济的创业者,那么这里有三个维度可以帮助你更好的理解中国的独特性。
城市维度
我们可以把中国的城市抽象成:乡镇、四线城市、三线城市、二线城市、一线城市,五个层次。

学历维度
中国的劳动人口的学历维度可以分为:小学学历,初中学历,高中学历,大专与普通大学学历,211/985大学学历。

年龄维度
年龄是一个至关重要的维度,信息文明高速发展推动的年龄代际更迭使得每个年龄层的互联网使用者都表现出完全不同的行为模式。所以,我们先粗略的把用户分为50后、60后、70后、80后、90后。
把这三个维度组织起来我们可以得出一个三维的劳动力人群划分图:
上图,实际上就是我们理解中国人口国情的一张藏宝图,三个维度分别切分成五个类别,5的三次方,可以划分125个区间,每个区间的劳动力激活都可能产生机会。
比如,我们可以举个例子:达达快递是利用移动互联网的能力,成功的激活了在一二三线城市居住的,80、90后,中专及以下的劳动力的碎片化时间挣外快问题。
回家吃饭便是满足了一二线城市居住的,50、60后,中专及以下的劳动力再就业需求。
厅客则是满足了一二线城市居住的,80、90后,大专及以上劳动力的探索人生另一种工作方式的需求。
第三,分清你的产品是需求场景,还是需求品类
做共享经济到底是“选择品类”重要,还是“锁定场景”更加重要。要理解这个问题,我们需要引入一个概念,就是引力。
重资产品类”引力强,围绕自身形成场景;“轻资产品类”引力弱,需要围绕场景构建品类。
比如,我们可以说 uber 捕捉的是打车需求产生的前后5分钟的场景。Airbnb捕捉的是在旅行中最关键的住宿选购的场景。
他们的区别在于前者是从使用者的视角看问题,后者是从被使用的物品为视角看问题。
两种不同的视角取决于品类的轻重。 比如,房子非常重,车子非常重,孩子非常重,所以围绕他们就容易形成围绕场景。但是,灯泡很轻,凳子很轻,电钻很轻,吃个便饭很轻,所以这些往往会融入到其他的场景中。
当你切入共享经济类别相对轻的时候,品类自身的引力不够形成周边场景,这个时候你就要转化思路,主动融入其他场景考虑问题。
比如“Enjoy”从高体验餐饮场景切入,构建了一个体验经济的核心场景,从而逐渐切入其他零食,甚至手工艺品就显得顺理成章。而“觅食”选择了覆盖所有饮食场景的全品类切入方式,反而有可能让用户觉得无所适从,最终只使用其最核心的一到两个场景,使得其他场景枯萎。
或者,如果你是做个人手艺的共享经济,那么你提供的共享服务层次和类别差异可能非常大。比如你提供主要是按摩、美甲、身体护理类的服务共享经济,这就是一个轻品类,它其实隶属于多个完全不同的场景,比如办公室场景、家庭上门服务场景、周末姐妹聚会场景。服务于不同的产品完全可以形成彻底不同的产品形态。
第四,看清打开频次与传播率之间的关系
作为一个交易平台,高频打低频的理论相信大家也是耳熟能详。
不过,到底为什么高频产品可以侵蚀低频产品呢?
这个可以看成是一个进化生物学问题,不过最终还是一个数学问题。
理查德.道金斯在他的著作《自私的基因》里面对于原始海洋中基因间如何竞争有过精彩的描述。进一步用数学来解释就是,如果有AB两个产品:
A产品用户体验非常好,用户满意度极高,每次使用都能产生200%的传播,但它一个月的时间只有5次用户打开。
B产品用户体验做的一般,用户满意度一般,每次使用只能产生5%的传播,但是它用户打开频率很高,一个月能打开200次。
那么一个月后,A产品传播结果为243,而B产品的传播结果则是惊人的17292。
所以,一个自我复制频率高但是每次复制能力低的产品,会胜过一个自我复制频率低但是每次复制能力强的产品。

以上四点即是我对于“共享经济如何在中国落地”的一些看法。正如央视财经频道所说,共享经济在中国已不是新鲜话题,它将越来越成为我们生活的一部分,我们也会进入一个全新的经济共享时代。
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07