京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据创业的五点须知
大数据是当今最热门的科技词汇,同时也是最困难的创业项目。CSC对Infochimps的收购表明,那些无法顺利拿到第二轮融资的大数据创业公司面临着要么关张,要么被人收购的命运,例如Drawn to Scale、Ravel Data和Nodeable等,当然还有很多很多大家没有注意到的大数据创业公司。
Gigaom作者Derrick Harris近日就大数据创业公司的成长和融资问题撰文指出,大数据创业公司要想生存发展并赢得投资人的芳心必须注意一下几点:明智地选择你的战场和目标用户并围绕你的技术建立社区。大数据需要的不是啦啦队,而是实干家。Harris的观点可以归纳为五点,IT经理网摘译整理如下:
1.基础设施非常难
不仅开发基础设施技术产品很难,销售起来也很难,具体到大数据基础设施工具如Hadoop、NoSQL数据库和流处理系统则更是难上加难。客户需要大量培训和教育,付费用户需要大量支持和及时跟进的产品开发工作。
这意味着需要大量的资金支持,例如Greenplum在2010年获得1亿美元投资但仍然不足以完成所有工作,最终不得不选择卖给EMC。今天最出名的几家大数据创业公司融的钱更多,例如Cloudera。基础设施类的大数据创业公司通常需要数百万美元种子资金启动,但是A轮融资的道路异常艰辛。
新兴的大数据创业公司还必须与那些在客户那里已经有一些知名度甚至合作项目的公司竞争,例如Cloudera、Hortonworks、10gen、亚马逊AWS、IBM、Oracle等。
反观大数据应用创业则相对简单的多,无论面向垂直行业应用还是数据可视化这样的通用大数据应用都是如此。因为这些大数据应用的价值对于客户来说更为直观,距离业务也更近,进入企业IT系统的摩擦也更小。
2.云计算是朋友
无论你是销售大数据基础设施还是应用,云计算都是更有效的业务载体。选择云计算不仅仅是在云端托管,更重要的是通过云计算向客户提供服务。你将拥有更多控制权,同时在有限的资源上优化运行也会让你对产品的理解更加透彻。
云计算也降低了潜在用户试用产品的成本和门槛,从NewRelic到亚马逊AWS都从云计算+大数据模式中获益。
3.开发者是朋友
如果你主要从事大数据分析,例如ClearStory、Platfora或者CRM营销应用,数据分析师就是你的朋友。无论那种情况,最好的办法就是围绕以开发者和市场人员为主的目标受众进行开发和营销工作,CIO反而不是很好的目标受众!
专注CIO而非开发者往往会导致你在实际签约时碰到棘手问题。围绕开发者营销的战术被很多云计算创业公司和纯大数据软件公司所采用,例如Splunk和Tableau。
再比如Infochimps和Continuuity的产品类似(两者都被迫按落云头,迫降在用户数据中心),但Continuuity完全面向开发者,这意味着能积累更多技术粉丝。
4.将数据科学家推向前台中央
这既是市场也是销售策略,数据科学家才是能够展示数据和平台威力的人,他们也是会议上最受欢迎的演讲者。
但大数据科学家也需要慎重选择传播内容。如今大家都接受了Hadoop和NoSQL,所以没必要每次开会言必称4V之类的科普。至于如何配置和集成大数据系统也只能吸引小部分听众,除非你的项目规模超大。
Cloudera比竞争对手出名的原因有很多,但其中Jeff hammerbacher绝对是一位举足轻重的人物。不要空谈大数据大数据的价值和架构,站在听众的立场说说具体能做哪些分析,如何做。
5.开源有多重要,取决于你自己
几乎所有的大数据公司都依赖开源软件,有些是“借”来的,如Hadoop、Storm以及各种数据库,有些是自行开发的,有些则是混合模式,例如在HBase上增加的一些功能应用。这些开源项目如此流行是因为社区的力量。
开源绝不是看起来那么轻松,不是说你在Github上放点代码就谈得上回馈社区了。开源的目的是将使用相同代码的人聚拢成社区,并不断改进代码。这里与第三点中我们提到的吸引开发者有关。只有更多的用户和开发者对你产生兴趣了,在你的产品上花时间和精力了,才有可能最终掏钱。
不计其数的创业公司都将代码开源了,但那些真正能推动项目并建设社区的公司才能脱颖而出。例如Neo Technology的Neo4j、Concurrent的Casading以及10gen的MongoDB。甚至Twitter这样面向大众的公司都开源了Storm和Mesos等项目。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06