京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析方法论:如何做实验研究
CEO:“这个月的销量下降了,小JAY,这个产品你负责的,找个策略吧。你肯定行(言外之意,不行炒了你)!”
小JAY:“好的,两周给您汇报结果!”
于是乎,小JAY开始忙活了了,销量这事,到底怎么个下降趋势,下降了多少,下降的节点。。。。。。怎么看?
没错,用事实说话,用数据说话!!
于是,小JAY和运营,销售那里将有关数据全部拿来,开始了漫漫的数据分析之路。
今天小JAY就带大家分析一下在数据分析中如何做实验。
数据分析的核心就是:通过比较法,理清因果关系。
常用的比较法就有观察分析和实验研究。观察分析就是将原始数据进行加工,经过数据分解,评估,最终得出结论的过程,优点就是省事方便,缺点也比较明显,主观性比较强,面对较真的上司,可能并不能说服她。实验研究则是对观察分析的补充和改进,在充分分析数据的基础上,进行实验研究进而得出更为有力的结论。
实验研究的核心同样是比较,但是要讲究方式。因为在一个问题的背后可能有一些不是数据能反应出来的因素,比如环境,人为等等不可控因素。因此要想找到可行高效的研究方法需要将这些杂质(数据分析中叫混杂因素)摒除掉,这样得出的结论才更为准确,鲁棒性更好。
为此,我们需要进行如下三部曲
下面依次说明一下每一个步骤的要点所在。
有时候上司说的话我们不能全信,但是要相信数据说的话。因此,对于老板提出的问题,我们要根据数据进行分析和确认。如果经过分析确实如他所说,那我们后期的努力起码方向不会错,而且也能按照上司的预期给出答案;否则就是一个吃力不讨好的活。
至于如何分析数据,确认问题,给出方案,这不是本文的重点,大家可以另行学习,这里不作赘述。
比如:这一步我们给出方案A和B。
所谓的控制组就是对该区域不做任何处理,将其作为标称对象,以便后期进行横向比较;
什么叫中间区域,什么叫两极区域?
我理解两极区域就是这个问题表现的最为严重和最不严重的两个区域。其他都可以称为中间区域。
为什么要做出这样的区分?
因为通常对于极端事物的出现必然有很明显的原因,根本不用作为实验对象,毫无意义。而且在极端区域,极端现象出现的原因很可能要远大于导致问题出现的真正的原因,所以,不仅研究这种极端现象毫无意义可言,而且还可能导致你的不出真正的解决方案,那你就out了!
比如在一个富人区,无论你的产品价值感有多么低,也不会出现什么销量下降的,因为钱对于他们来说根本不是问题。那你怎么实验都不会得出结论。或许你定价再高点,反而销量会更好,因为逼格更高了!!!!所以我们不能动它,无论它是销量高还是销量低,我将其作为比较对象即可。
中间区域则是最不能忽略的,就如同产品里面新手用户,中间用户和专家用户的分类一样,原因就不作表述了。
在中间区域做实验,一切就绪,但是一个区域毫无比较可言,高中做生物实验也要讲究控制变量法。那好吧,必须也要将实验区域分为实验组和控制组。
所谓实验组就是将中间区域按照解决方案的数量随机分开等份的组别,分别对两个区域应用解决方案A和B。
由于他们同属于一个大的区域,因此,混杂因素的影响是等同的,因此也就不必担心其他不可控因素带来对解决方案的负面影响。
说一千道一万,这是最重要的一步,也是检验成果,助你步步高升的一步。但是俗话说磨刀不误砍材工,因此前面几步的质量直接决定了解决方案的成效。解决方案要按照在试验区域的结果进行制定,对于那些极端区域,好的可以继续保持,坏的可以双管齐下,因地制宜啦。
bla了这么多,其实想说的就是在数据分析做实验阶段,最重要的是一个控制变量法,这真的是一把万能的钥匙,但是开锁的方式还是得自己选,你准备好了么?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31