京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析提升实时营销竞争力
数据集成、列式数据库解决方案能够让营销代理机构处理数百太字节,对消费者进行360度的全方位评估。
Merkle是一家领先的客户关系营销代理机构,目前拥有1600名员工,年营收额超过3亿美元。戴尔、Geico、DirecTV和Chase等知名厂商都是Merkle的客户。由于Merkle通过ParAccel的大数据分析平台对消费者进行360度的全方位评估,因此该公司的客户能够展开实时营销活动,并且能够更高效、更精准地调整这些活动。
在收集客户信息,然后再针对营销目标提供“数据即服务”(data as a service)方面,Merkle有着丰富的经验。以往Merkle会每月批量处理这些海量数据。为了从营销数据库公司向客户关系营销公司转型,Merkle需要调整和整合大数据来源。IP地址、Cookies和电子邮件等数字化消费者信息必须与其姓名、住址和电话号码等传统的离线信息结合在一起。最终,客户需要更深层次的营销互动,例如针对特定消费者的电子邮件和横幅广告。
实现实时性
为了实现这些目标,Merkle需要具备整合所有互动活动,以及能够对每名消费者的行为进行360度全方位评估的能力,同时将每月批量处理这些海量数据的模式调整为近实时处理的模式。为了具备这一能力,Merkle创建了专门用于大数据分析的数据仓库,其中一些部署在客户那里,另一些则由Merkle托管。
在选择适宜的技术方面,Merkle面临的挑战包括大数据分析环境的成本、可预测的高性能和扩展性,以及目前分析解决方案无法满足的特殊需求。最终,Merkle为其大规模并行处理(MPP)列式分析数据库选择了ParAccel分析平台。Merkel的技术副总裁Peter Rogers说:“Merkle选择ParAccel的原因是,因为它拥有优异的执行速度和性价比。”
为了实时分析结构化的大数据,MPP列式分析数据库成为一个普遍的选择。列式存储指关系型数据库将数据以列的方式进行存储,而不是以行的方式进行存储。这样做的优点是获得了更快的查询速度。此外,数据经过压缩后可以进一步地提升查询效率。与此同时,由于MPP的特性使然,用户可只需简单地添加一些商用硬件即可对MPP进行线性扩展。
掘金大数据
经济上的可承担性也是Merkle做出这一选择的重要原因。ParAccel分析平台处理每太数据的价格约为4500美元,这一价格远远低于其他竞争者所给出的价格。成本优势让存储和分析数据具有更大的成本可负担性。自从迁移到ParAccel平台后,Merkle的数据处理量提升了三倍。此外,ParAccel平台还具有更大的容量和500多个先进易用的分析功能。这使得Merkle能够为他们的客户提供更具竞争力的解决方案。
Merkle的一个特殊需求是使用已有的T-SQL技能。T-SQL为微软SQL Server所使用的查询语言。Merkel此前已经广泛使用了微软SQL Server,他们希望公司的数据管理员经过最低限度的培训就能够使用ParAccel平台。ParAccel的专业服务提供了一个T-SQL解析器,开发人员可以用T-SQL编程,然后再将编好的程序翻译成能够在ParAccel平台上高效运行的SQL语言。
在前端,Merkle使用MicroStrategy实现虚拟化和商业智能。数据集成方面,Merkle使用原生的ParAccel工具加载数据。这样一来,所有的转换都能在ParAccel上执行。
目前,Merkel已经部署了五个ParAccel集群,这些集群维护着总计50太压缩数据(相当于200太的原始数据)。Merkel每天根据用户需求处理1至250GB的原始数据。这些客户对Merkel的服务非常满意,这要归功于基于实时互动的360度全方位消费者综合评估。此外,大数据分析还让这些客户能够展开更加精准和有效的营销活动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26