京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,为何内存分析技术至关重要
据估计,大数据技术和服务市场的规模预计每年拥有27%的增长,市值将于2017 年达到 324 亿美元。增长的主要驱动力来自于构成物联网(IoT)的联网设备所产生的海量数据。据估计,到2020年联网设备的数量将会增加到 300 亿台。海量的结构化和非结构化数据成为许多企业面临的新现实,而这也使物联网不断为企业业务带来新的挑战。
为从物联网的发展中获益,行业已创建了各种新工具和新技术,以控制和转换多样化的海量数据。与此同时,各种解决方案也不断涌现,其中既有传统的分析解决方案,也有 Apache™ Hadoop* 这样的全新框架。这些新框架提供了内存计算功能,即将数据存储在主内存中,而非传统硬盘中。此类内存数据库和分析解决方案,能够在几秒钟或几分钟内完成复杂多样化的数据集的分析,而无需耗费数小时或数天时间,分析复杂多样化数据集的性能获得显著提升,从而为企业实时地提供重要洞察。
如今,内存分析解决方案可帮助企业在几秒内获得重要洞察和全新信息,从而能够更快做出准确决策,并推出针对客户需求量身定制的产品与服务。这种实时分析多样化海量信息的能力将使企业从大数据中获得丰厚回报。
何为实时分析?
企业很少能够奢侈地花费数天或数月的时间来存储和分析数据。如果,无法及时捕获和分析产生的数据,则将阻碍企业建立竞争优势。但是,如果企业能够及时地发现特定机遇,则将能够创造出数以千万乃至数亿美元的收入。分析工具可为企业提供实时信息,帮助企业客观、深入地了解重要业务现象,并为管理者提供基于事实的信息,帮助其基于事实、而非直觉制定决策。全新内存分析解决方案构建于向上扩展系统之上,如基于英特尔®至强™ 处理器 E7 v2产品家族的系统等。这类系统并不是通过传统的硬盘访问数据,而是在内存中分析数据,从而提供实时洞察。事实上,最近已有示例表明,内存分析解决方案的分析速度最高是基于磁盘的解决方案的 148 倍3。
以下案例展示了实时分析环境对于众多行业的重要性:
金融服务
对于金融服务行业而言,其价值在于即时关联各种载体上的数据,得出有洞察力的结论。例如,在欺诈检测中,金融机构能够实时对比典型的消费金额、购买类型和消费地点,并快速标记出与常规活动不符的消费习惯。此外,金融机构还能够检测常见的具有欺诈嫌疑的消费模式,例如,在进行金额较小的试探性购买之后,立即在珠宝或电子产品商店进行大额消费的行为。
医疗
医疗行业是一个关键业务环境,实时分析对于该环境有着至关重要的意义。例如:
· 重症监护室,其诊断依赖于对从多种显示器和设备中获得的患者数据的近乎即时地分析。
· 药房要求其平台能够根据医疗记录分析就诊患者的数据,确保正确配药并确定合适的剂量。
零售
密切关注产品竞争价格的零售商对于实时分析的益处有着最直接的认识,实时分析将能够帮助他们显著增加销量并提升客户体验。但是,高速分析需要大量数据消耗以及实时的数据处理能力,以完成以下任务:
· 获得产品完整的竞争定价情报
· 根据定价、商品分类和库存制定实时的数据驱动型决策
· 捕获和处理来自各种来源的数据,如定价、社交媒体、市场营销、销售和支持等
· 提高收益、利润和市场份额
为何内存对于实时分析至关重要?
内存分析在计算机的主内存中进行,不处理存储在物理磁盘上的数据,为查询整个数据集提供了一种重要方法。这一方法可以显著缩短查询响应时间,让商业智能(BI)和分析应用能够支持企业更快地做出明智的业务决策。
商业智能和分析应用需要在主内存中长期缓存数据,而具有数以TB计可寻址内存的系统将能够支持在计算机主内存中缓存大量数据,如整个数据仓库或数据集市等。
除提供速度极快的查询响应以外,内存分析还能够减少或消除数据索引,以及将预汇总的数据存储在在线分析处理(OLAP)数据库或汇总表中的需求。据预测,随着商业智能和分析应用采用内存分析,传统的数据仓库可能仅用于支持不活跃或频率较低的查询。
实时分析领域最新动态
大量数据的存储和实时分析能力将不断为企业、学术机构和政府带来机遇,同时也为IT提供商带来了新的市场空间。
目下,以SAP HANA为代表的内存分析技术迅速崛起,而IBM、微软、Oracle、SAS、Teradata等主流数据库、数据分析及数据挖掘厂商,也都已经将内存分析技术做成了标配功能。
日前,英特尔公司宣布推出新一代至强E7 v2 处理器产品家族,除了在处理器和内存方面实现最高系统持续运行时间的高级可靠性、可用性和可维护性(RAS),还将内存容量和 I/O 速度分别比上一代提高3倍和4倍,从芯片级支持企业实现其数据的全部潜力。包括国际的IBM、HP、Dell、EMC,国内的华为、浪潮、宝德、曙光等多家厂商,纷纷在第一时间基于该芯片推出面向实时分析的解决方案,从而帮助企业以更低的成本进行更高效的运营,并更快速地响应客户需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16