京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据库技术发展的四个方向
数据库技术发展已经超过30年,我认为,最近几年数据库技术发展将会有如下4个方向。
一是规模会向两头发展—大的越来越大,小的越来越小。所谓大的,指的是企业级数据库的规模。10年前,数据库存储的数据大都以GB为基准衡量,几十GB就已经非常庞大。而现在,只广东移动每个月新增的数据量,就已经以TB衡量,不出3年,很多企业要存储的数据就要达到PB级。数据量越来越大,需要更大的数据库做支撑,这就是数据库的发展方向之一。另一方面,数据库也会越来越小。现在,Sybase的数据库已经安装在高档的Casio手表中了,这些手表中记录的有天气情况、气压、佩带者的血压、心跳等数据。这种数据库并不要求数据存储量大,但是要求在低计算量的情况下反应快,而且能够适应外界环境的变化。
二是存储方式从行到列的改变。以前数据库都是以行的形式存储的,理由很简单,用户需要的是对单条数据的读取和存储。而现在,单纯的数据记录已经不足以支撑企业发展了,企业更需要的是数据分析和决策支持。那么,单纯看一条记录没有任何意义,而是要把所有数据的某一项都统计出来进行分析,这就是列的概念。以中国移动为例,上亿个用户,每个月上TB的数据,哪些是VIP用户,该如何根据他们的需求提供专有服务,对于那些动感地带的用户,到底应该制定哪些优惠政策,除了看话费,是不是还能挖掘出他们的消费特点,进行更有针对性的业务推广活动?这些,就不是看一条数据的问题,而需要频繁对列进行操作。我预计,不出半年,各大数据库厂商都会推出以列为存储方式的数据库。
三是非结构化数据仍然不能纳入数据库中。说到这里,可能大家都认为我在逆潮流而动,现在很多数据库厂商都可以接受图像、视频等非结构化数据了,Sybase怎么还要死守着结构化数据呢?其实我认为,非结构化数据要想进入数据库,仍然需要结构化,只是这种结构化的方法各厂商不一样,而且相比以前有了很大的进步和提高。以前我们图片的记录方式是记录它的文件名,如果文件名中提到了某个人的名字,那么在整个数据库查询的时候,就可以把这个图片找到。而这是非常不科学的,因为很多非结构化数据的文件名起的并不可能完全。那么,现在大家把非结构化的数据变得结构化,其实就是在用结构化的数据描述这张图片,比如用点和位置来记录这张图片的每个像素。而一旦需要做查询的时候,可以根据像素的组合记录来比对,把符合比对要求的数据全部筛选出来。这样就把非结构化数据以结构化的方式纳入数据库中了,并能接受查询、检索等操作。
四是数据库和数据仓库会分开。很多数据库厂商认为,数据库一个就行,一专多能,既能用它进行实时交易,也能用它来进行数据分析。但是,其实很多用户现在在前台需要数据库提供实时交易功能,需要有很快的响应速度,而在后台,则需要设立一些规则进行数据分析和商务智能分析。Sybase就认为,这两个数据库应该是两种格式,毕竟它们的功能不一样。因此,从产品设置上,Sybase有交易型数据库和分析型数据库两种。
事实上,30年来,数据库也在不断发展进步。这些预测都是方向性的,不同的企业肯定会有不同的理解,用户的选择是最终的评判标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26