京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SIEM需要具备四种大数据分析能力
现在,每一秒都有一个恶意软件新样本产生,高达83%的企业遭受过高级持续威胁的攻击…大数据不仅仅是客户所面临的挑战,对安全产品供应商也同样。如果说,风险等于威胁乘以资产再乘以漏洞,那么大数据时代,风险正变得更加讳深莫测。
2013年是企业大规模采用大数据技术的一年,Gartner发布的相关报告显示,42%的IT主管表示其所在的企业已经投资大数据技术或者将在一年内进行相关投资。从海量的低价值密度的结构化和非结构化数据中获取有价值的信息,显然已经成为企业IT收益的重要组成部分。与此同时,还没结束的2013年已经被人们扣上了“网络安全漏洞之年”的帽子。迈克菲全球消费市场副总裁Gary Davis在一篇博客文章中写道,截至到今年8月份,大量的网络攻击事件让众多企业,特别是金融机构损失高达数百万美元。从以报复为目的的“黑客行为”到非法信用卡诈骗,网络诈骗可谓无所不用其极。
对于大数据来讲,重点不是数据,而是应该如何处理这些数据——对这些数据进行分析获取所需要的情报信息,Gartner发布的这一言论同样被广泛认同。事实上,SIEM (安全信息和事件管理)本身就是为了应对数据处理能力不足这一根本问题。迈克菲副总裁兼亚太区首席技术官Michael Sentonas曾表示:“SIEM是智能安全系统中非常重要的领域。迈克菲的SIEM产品可将其全球威胁智能感知系统与应用、终端、网络、数据库等其他渠道信息进行整合,对安全数据进行实时分析。此外,IPS、防火墙等技术也被融入SIEM解决方案中。”以SIEM为平台的整合解决方案对不同攻击具有更高的可视度,让安全防护更加主动。
实时分析的强大性渗透整个网络
一些具有安全意识的行业,例如大型金融服务机构和政府机构早在初期已经采用 SIEM,但直到 2005 年左右,萨班斯-奥克斯利法案 (Sarbanes Oxley) 审计通过之后才得到广泛应用并建立有效市场。合规审计不仅扩大了 SIEM 的应用规模,还衍生了大量其他安全设备并提升了日志记录水平。迈克菲亚太区SIEM解决方案实践经理 Mason Hooper表示,对于今天的安全威胁环境来说,传统的SIEM产品更多的只是关注日志并对其进行收集和分析,这显然是不够的。而是要实时掌控整个网络的异常情况,还需要关注应用层的安全。
从众多的报道中,我们能够看到一些机构组织在已经通过了据称基于严格合规标准的安全审计以后,仍然发生了灾难性的数据泄露, IT 安全防护亟需从按章照抄式的合规发展为覆盖外围、内部、数据和系统安全防护的全方位安全计划。为应对这些不断增加的安全控制手段,可谓是极富创新性和韧性的攻击者们同样提高了攻击方法的复杂度,因此,迈克菲认为SIEM 需要检测缓慢攻击,快速检测事件流异常,并获取相关的数据、应用程序和数据库上下文信息。而大数据包含的数据集规模过于庞大,拥有强大的数据分析能力的SIEM解决方案才得以胜任。
关系数据可扩展性。由于事件数据量持续成倍增加,攻击复杂度也越来越高,通过有关来源、资产、用户和数据智能态势感知的关系数据丰富事件数据将变得十分关键。另外,还需要在数据库架构中提供这类信息与事件流之间的实时关联。虽然许多 SIEM 都具有这些功能,但由于数据库端的表限制,极少有 SIEM 能够支持多个宽泛列表。同时,为避免分析性能下降,当用户请求获取信息时,许多 SIEM只是简单查找此信息,而不会进行实时关联和呈现。
动态分析。大数据环境下,仅仅是简单的事件流分析(只显示连接频率以及是否发生变化)已经不足以获得对真实态势的感知。当今的 SIEM 需要动态情景,从而根据来源信誉、资产风险以及与之相关的数据、应用程序和数据库活动,识别用户行为变化并动态调节风险。动态分析是缓慢攻击检测的重要组成部分,大数据安全SIEM架构需要适应这种情况。
历史数据分析。攻击检测和有效事件响应的另一个重要方面是能够分析历史事件数据。鉴于当今的攻击方法,迈克菲SIEM 解决方案能够访问数年的数据,从而快速定位模式和异常,同时在不影响性能的前提下开展实时分析。同时还能够与存储系统轻松集成并有效存储事件数据,以避免使用大量存储设备及产生巨额成本,其创新的架构可以支持频繁地同时使用实时功能和历史功能。
事件暴增。当发生事件数据增长超出预期峰值限制时,分析人员能否确定这种事件量增长是否由主动攻击引起将至关重要。专为大数据安全构建的迈克菲SIEM不仅能够处理这些暴增情景,而且还能够将这些暴增情形纳入许可方案。相反,那些不了解这一问题的 SIEM 将会在超出每秒事件量 (EPS) 限制时丢弃事件或阻止分析人员访问控制台,在最关键的时刻禁止安全团队访问他们的主要态势感知工具。
大数据不仅对于机构是一项严峻挑战,对于安全团队同样提出了更高要求。过去,对于加强安全性的迫切需求一直驱使人们收集分析越来越多的事件和安全数据。随着安全数据量的不断上升,传统的SIEM产品更多的只是关注日志,对其进行收集和分析。对于今天的安全威胁环境来说,传统的SIEM功能显然是不够的。只有与大数据分析相结合,形成从数据收集分析到快速完成安全管理策略建议,这才是SIEM真正需要做的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08