
一个成功的数据分析团队:角色与职责
多年以来我和数百家企业打过交道,在这个过程中,我领悟了让数据分析项目成功的一些因素,也亲眼看着很多项目失败。
最常见的失败原因说出来可能会让你惊讶。并非是缺乏数据专业知识或者整合失误,而仅仅是因为企业没有让“利用数据”成为任何人员的职责。太多公司花费好几个月收集有趣的数据,然后让它们静静地躺在角落里积攒灰尘。这个现象驱使我来撰写本文,希望它能给你灵感,让你为下一个分析项目增加一些结构性。 对分析的应用,本应该成为你不断汲取的商业泉源。
如果能为下列每个角色,找到至少一个乐于担当的人选,我保证你项目成功率会增加一千倍!对每个角色的具体描述和建议见下文。
*并未经过科学证实
角色 | 交付 |
---|---|
项目领导者 | 项目规划,包含工作范围与时间 |
数据建构者 | 数据模型,查询语句 |
产品开发者 | 实现跟踪(埋点) |
分析者 | 提供新的业务问题 |
报告制作者 | 为业务提供报告 |
有一个团队成员要负责分析工作的实施交付。你可能已经知道,一个高效的项目管理者要:
对项目领导者的建议:
这个头衔听起来很炫,但它只是意味着你的团队需要有个懂技术的人创建数据模型,并理解查询语句如何工作。数据模型可以很简单,甚至像一封电子邮件,列出你要跟踪的行为和优先级。这个模型有助于确定和传达你的项目范围。数据建构者帮助整个团队评估哪些业务问题可以被回答,哪些不能。通常这个人不必是数据科学博士,一般由一个app开发人员,或者懂得用电子表格建立模型的人担任。
对数据分析者的建议:
项目一开始,就要有至少一个开发人员承担埋点的工作。他们在各处加一些代码,这样每次登录、购买、上传和其他行为的数据都能被保存。如果事件的来源有很多,比如移动应用+网页,这个工作可能由多个开发者完成(如,一个网站开发者和一个移动开发者)。在小一些的机构,埋点的开发者通常也扮演数据建构者。在大一些的团体中,开发者和数据建构者紧密合作,确保模型数据足够理想,以及事物被跟踪并以一致的格式标记(如“user.id” = “23cv42343jk88” 不是 “user.id” = “fran@cooldomain.com”)。埋点是个相对直接的过程,许多分析服务有直接可用的客户库使得此过程简化,不过,你的团队依然需要决定要跟踪什么行为,如何命名。
对产品开发者的建议:
你会收集很多有意思的数据,但如果没人利用,这些数据就不会有价值。团队里需要至少有一个人对数据背后隐藏的东西非常好奇。我把这些人称为分析者。分析者通常是个开发者、产品经理或产品团队/营销团队的某个人。这些人不仅疯狂地想了解业务问题的答案,还能时时提出新问题。分析者喜欢钻研项目第一阶段收集的数据,而且有很多点子,引出下一阶段应该收集的新东西。换句话说,团队中需要有个人享受实践分析的过程。不要着急,这样的人有很多:)。技术背景对这个角色有很大帮助,这使得他们能快速理解什么样的查询语句可以得到想要的答案。这个角色对于项目成功至关重要,如果没人从数据中理解、学习,就无法从中得到任何价值。
对分析者的建议:
这个角色不是必需的,但你可能会想要制作一些报告,便于整个团队和其他利益相关者获取。要想让数据的实用性会大大提升,数据应该更紧密地与业务流程相连,而不是被遗弃在数据库里等着有人翻阅。一个前端开发者要能够把query变成产品经理和其他业务人员阅读的报告。下面是一些可能有用的例子:
对报告制作者的建议:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07