
电商数据分析8要点
说到数据分析,大家心里首先想到的是什么?UV,PV,点击率,跳失率,ROI还是别的什么?这些数据的作用 大家可以说出一大堆,这些利用数据分析,推广引流效果,分析页面营销效果,分析顾客质量效果等等的数据分析,已经成了很多运营 和新手们的常规思路和操作了。
这个对吗?不能说不对,因为这些的确是要做的;但也不能说对,因为这些不是最重要的;那最重要的是什么?回答这个问题 之前,大家不妨换位思考下,如果你是老板或者是BOSS来做这个项目,你最为关心的点是什么?最想利用数据分析知道什么?
就三点;成本,效率,效果;打工者和老板的区别也就在这里;打工者的心态效果最重要,效率第二,成本第三;因为效果就是功劳,功劳就是存在感和成绩,就是身价;效率不重要,无非累点,功劳苦劳是一样的;成本反正是老板出钱,无关痛痒;
但老板的心态就反过来了,成本是最重要的,要割肉总会谨慎点儿;其次是效果这钱花的值不值的;最后才是效率,这个效果要多久才能看到。
回到本文主题,我们数据分析真正的要点,真正的根本也是这三点,成本,效率,效果;那么围绕这个要点,我们该如何具体的操作了?具体分析哪些数据点了?
1、精准流量来源
生意谁都想好刚用在刀刃上,平白无故的损耗,不是傻大粗,就是富二代;客户,流量 哪儿来的最精准?对比每个流量来源的比例,和用户质量;通过流量来源 访问深度 停留时间,实际转化等等,来判断;
哪儿的流量最靠谱?其次是哪儿的?决定了 后期推广要点的主次;
实际运用:在没有经验和资源的背景下,需要试水各种渠道的引流效果,我们监控这些引流渠道的质量;如:哪儿来的客户成交转化率最高?哪儿来的客户 访问深度 停留时间都最好?
2、每个用户的获取成本
一个流量多少钱?一个客户多少钱?一个实际购物转化的精准客户多少钱?
这样,就清晰落实了计划目标;我需要实现500000的月销售额;一个成交的精准客户的成本是10元,客户人均消费5000块;那么你要实现50万的月销售额,起码要1000块以上的广告投入;
这样 不就清晰了吗?
实际运用:花了多少钱?来了多少人?多少人付款了?量子后台都有具体的
3、每个用户能赚多少钱
跟第二个差不多,这个重点是 咱们能从每个用户手里赚多少钱?
1000个人里面,有多少人是无意向用户?有多少人是潜在用户?有多少人高质量的成交用户?通过对引流渠道的监控排查,分析三者的比例;
这对于咱们营销推广的支出,很有参考意义
实际运用:来了多少人?多少人付款了?多少人没付款?销售额多少?销售额除以总人数,人均消费多少钱?除以成交用户数,质量用户 人均成交多少钱?
4、每个用户,你总共能赚多少钱
这里有两个意思,1,是习惯,用户习惯性在购物周期的反复消费购买你们家的产品;2,用户对你现在的产品,或者往后的产品都很感兴趣,持续关注后消费;如同苹果小米系列;
实际运用:统计你店铺里反复消费人群,试着找出他们的消费周期;都是因为什么?因为什么时段 过来消费的?然后 针对其消费周期的原因 针对性的做营销活动,是不是会事半功倍了?还有兴趣针对其感兴趣的元素来包装产品,是不是更容易让用户爱不释手了?
比如:很喜欢漂亮衣服的OL,每个月肯定会在发工资 和 周末约会等时候,发现衣服不够穿,想多买几件的冲动等等。
5、不是你的用户,但是你的产品用户
听着很绕,其实意思很简单;用户在网上找他们心怡的某一款产品;但并不是找你,但如果你也有类似的 产品,那么这帮人是不是可以吸引过来 为你所用了?
实际运用:分析自己类目里流行的款式风格都有什么?喜欢他们的用户都多不多?自己是不是可以针对这个用户喜欢多的产品,关键词属性等等,做下关键词优化,属性优化,然后再营销包装下了?效果肯定不会差
6、为什么没有付款?
不管是新老客户 下单购买转化;流程走到一半,忽然不买了;为什么花了钱引流,效果却没跟上?中间出了什么问题?因为系统原因,无法使用支付宝或网银?因为看到竞争对手比你价格低?等等
实际运用:用户购买的通道 不仅要保障通畅,还要保障舒心舒适;
7、用户在那儿找到我们的?
这个跟第一个的意思差不多,但是偏向于用户调查了;其实也没那么麻烦;知道用户都是在那儿找到我们的,更有利于我们调整推广方向,提升效率,提升效果,降低成本。
实际运用:可以做个简单的顾客调查;还可以在你店铺流量入口多了的情况下,让客户在客户咨询的时候,提问收集下。
8、移动端的趋势
移动端毫无疑问是下一个阶段的热点;当前有多少人是通过移动端访问你的网站店铺的?当前的移动端流量比例又有多少?分拆部分时间精力,优化下移动端的浏览和购物体验。
实际运用:产品详情页,店铺移动端装修等等,适当优化下移动端的浏览和购物体验了。
本来只有8点,小舟生硬的加上了第8条;因为移动端的确是一个趋势,碎片化时间不说,官方大力扶持也不说;单说各个平台对移动端的疯狂劲儿 都能看出这个市场的火热,以上六点是咱们做生意 必须时常要考虑的点;最后一点是针对移动端要加油的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07