
电商数据分析8要点
说到数据分析,大家心里首先想到的是什么?UV,PV,点击率,跳失率,ROI还是别的什么?这些数据的作用 大家可以说出一大堆,这些利用数据分析,推广引流效果,分析页面营销效果,分析顾客质量效果等等的数据分析,已经成了很多运营 和新手们的常规思路和操作了。
这个对吗?不能说不对,因为这些的确是要做的;但也不能说对,因为这些不是最重要的;那最重要的是什么?回答这个问题 之前,大家不妨换位思考下,如果你是老板或者是BOSS来做这个项目,你最为关心的点是什么?最想利用数据分析知道什么?
就三点;成本,效率,效果;打工者和老板的区别也就在这里;打工者的心态效果最重要,效率第二,成本第三;因为效果就是功劳,功劳就是存在感和成绩,就是身价;效率不重要,无非累点,功劳苦劳是一样的;成本反正是老板出钱,无关痛痒;
但老板的心态就反过来了,成本是最重要的,要割肉总会谨慎点儿;其次是效果这钱花的值不值的;最后才是效率,这个效果要多久才能看到。
回到本文主题,我们数据分析真正的要点,真正的根本也是这三点,成本,效率,效果;那么围绕这个要点,我们该如何具体的操作了?具体分析哪些数据点了?
1、精准流量来源
生意谁都想好刚用在刀刃上,平白无故的损耗,不是傻大粗,就是富二代;客户,流量 哪儿来的最精准?对比每个流量来源的比例,和用户质量;通过流量来源 访问深度 停留时间,实际转化等等,来判断;
哪儿的流量最靠谱?其次是哪儿的?决定了 后期推广要点的主次;
实际运用:在没有经验和资源的背景下,需要试水各种渠道的引流效果,我们监控这些引流渠道的质量;如:哪儿来的客户成交转化率最高?哪儿来的客户 访问深度 停留时间都最好?
2、每个用户的获取成本
一个流量多少钱?一个客户多少钱?一个实际购物转化的精准客户多少钱?
这样,就清晰落实了计划目标;我需要实现500000的月销售额;一个成交的精准客户的成本是10元,客户人均消费5000块;那么你要实现50万的月销售额,起码要1000块以上的广告投入;
这样 不就清晰了吗?
实际运用:花了多少钱?来了多少人?多少人付款了?量子后台都有具体的
3、每个用户能赚多少钱
跟第二个差不多,这个重点是 咱们能从每个用户手里赚多少钱?
1000个人里面,有多少人是无意向用户?有多少人是潜在用户?有多少人高质量的成交用户?通过对引流渠道的监控排查,分析三者的比例;
这对于咱们营销推广的支出,很有参考意义
实际运用:来了多少人?多少人付款了?多少人没付款?销售额多少?销售额除以总人数,人均消费多少钱?除以成交用户数,质量用户 人均成交多少钱?
4、每个用户,你总共能赚多少钱
这里有两个意思,1,是习惯,用户习惯性在购物周期的反复消费购买你们家的产品;2,用户对你现在的产品,或者往后的产品都很感兴趣,持续关注后消费;如同苹果小米系列;
实际运用:统计你店铺里反复消费人群,试着找出他们的消费周期;都是因为什么?因为什么时段 过来消费的?然后 针对其消费周期的原因 针对性的做营销活动,是不是会事半功倍了?还有兴趣针对其感兴趣的元素来包装产品,是不是更容易让用户爱不释手了?
比如:很喜欢漂亮衣服的OL,每个月肯定会在发工资 和 周末约会等时候,发现衣服不够穿,想多买几件的冲动等等。
5、不是你的用户,但是你的产品用户
听着很绕,其实意思很简单;用户在网上找他们心怡的某一款产品;但并不是找你,但如果你也有类似的 产品,那么这帮人是不是可以吸引过来 为你所用了?
实际运用:分析自己类目里流行的款式风格都有什么?喜欢他们的用户都多不多?自己是不是可以针对这个用户喜欢多的产品,关键词属性等等,做下关键词优化,属性优化,然后再营销包装下了?效果肯定不会差
6、为什么没有付款?
不管是新老客户 下单购买转化;流程走到一半,忽然不买了;为什么花了钱引流,效果却没跟上?中间出了什么问题?因为系统原因,无法使用支付宝或网银?因为看到竞争对手比你价格低?等等
实际运用:用户购买的通道 不仅要保障通畅,还要保障舒心舒适;
7、用户在那儿找到我们的?
这个跟第一个的意思差不多,但是偏向于用户调查了;其实也没那么麻烦;知道用户都是在那儿找到我们的,更有利于我们调整推广方向,提升效率,提升效果,降低成本。
实际运用:可以做个简单的顾客调查;还可以在你店铺流量入口多了的情况下,让客户在客户咨询的时候,提问收集下。
8、移动端的趋势
移动端毫无疑问是下一个阶段的热点;当前有多少人是通过移动端访问你的网站店铺的?当前的移动端流量比例又有多少?分拆部分时间精力,优化下移动端的浏览和购物体验。
实际运用:产品详情页,店铺移动端装修等等,适当优化下移动端的浏览和购物体验了。
本来只有8点,小舟生硬的加上了第8条;因为移动端的确是一个趋势,碎片化时间不说,官方大力扶持也不说;单说各个平台对移动端的疯狂劲儿 都能看出这个市场的火热,以上六点是咱们做生意 必须时常要考虑的点;最后一点是针对移动端要加油的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16