京公网安备 11010802034615号
经营许可证编号:京B2-20210330
四步解读SEM账户如何做数据分析
四步法:分析账户整体数据趋势->通过2/8原则选择优化样本->通过四象限法确定优化方向->对应漏斗分析优化因素。
一、分析账户整体数据趋势
1.按推广时间&周期整理好三个基础数据:消费、点击量和展现量;
2.对应查看平均点击价格CPC和点击率CTR的趋势;
3.找到波峰波谷出现的时间点,并分析其出现的原因;
4.良好的数据表现应该是CTR呈上升趋势,CPC呈下降趋势。
二、通过2/8原则选择优化样本
1.选定分析数据波动时间段;
2.选择消费占比80%的数据:20%的关键词占了账户总消费的80%,则需要把这20%的关键词找出来。①对于小型账户,可以一个关键词一个关键词全面进行分析;②对于大型账户,利用2/8法则找到矛盾点。需抓主要矛盾,按照推广计划和单元,选择主要分析样本。
三、通过四象限法确定优化方向
Ⅰ象限>高转化高消费:通用词或产品词居多,优化方向:提升关键词质量度,同时提高网站咨询和线下成单率。
Ⅱ象限>高转化低消费:品牌词和企业自身主营业务词,将此象限关键词作为种子词,进行拓词,测试并挖掘出更多优质关键词。另外可拓宽低成本关键词匹配模式,获得更多展现机会。
Ⅲ象限>低转化低消费:放低处理的优先级,先解决其它象限的问题,或尝试短期内放弃低转化低成本而测试转化量提高的方法。从此类词中继续划分子象限,按照2>1>3>4的顺序,漏斗全程调整。
Ⅳ象限>低转化高消费:此类词竞争大,成本高,常亏损,可先尝试降低成本往Ⅰ象限靠。优化后仍无起色则可暂停或删除。
四、对应漏斗分析优化因素
1.展现量影响因素:①账户方面:查看预算、地域、时段、账户结构是否存在不合理;②关键词方面:有消费关键词数量少,关键词类型较窄,需拓词,关键词匹配限制,关键词排名过于靠后(质量度或出价较低)等。
2.点击量影响因素:①账户方面:结构不合理;②关键词方面:排名位置不好(质量度或出价较低);③创意方面:相关性不好,吸引力不够。
步骤1-下载报告
步骤2-数据筛选
步骤3-数据下钻,定位原因
3.访问量影响因素:①访问URL打开速度有问题;②创意与目标页面相关性差;③网站吸引力不够。
测试1-尝试调整创意
测试2-访问URL的更换
测试3-调整网站结构或内容
4.咨询量影响因素:①网站建设方面:充分研究浏览者的兴趣、行为和习惯,保证网站的:美观性/专业性/互动性;②物料选择方面:选择跟潜在客户需求相关的关键词,围绕企业的业务及核心优势撰写创意。
5.订单量影响因素:①客服团队专业知识、沟通技巧、营销意识;②网站订单转化路径;③产品价格,公司经营,售后等方面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08