
四步解读SEM账户如何做数据分析
四步法:分析账户整体数据趋势->通过2/8原则选择优化样本->通过四象限法确定优化方向->对应漏斗分析优化因素。
一、分析账户整体数据趋势
1.按推广时间&周期整理好三个基础数据:消费、点击量和展现量;
2.对应查看平均点击价格CPC和点击率CTR的趋势;
3.找到波峰波谷出现的时间点,并分析其出现的原因;
4.良好的数据表现应该是CTR呈上升趋势,CPC呈下降趋势。
二、通过2/8原则选择优化样本
1.选定分析数据波动时间段;
2.选择消费占比80%的数据:20%的关键词占了账户总消费的80%,则需要把这20%的关键词找出来。①对于小型账户,可以一个关键词一个关键词全面进行分析;②对于大型账户,利用2/8法则找到矛盾点。需抓主要矛盾,按照推广计划和单元,选择主要分析样本。
三、通过四象限法确定优化方向
Ⅰ象限>高转化高消费:通用词或产品词居多,优化方向:提升关键词质量度,同时提高网站咨询和线下成单率。
Ⅱ象限>高转化低消费:品牌词和企业自身主营业务词,将此象限关键词作为种子词,进行拓词,测试并挖掘出更多优质关键词。另外可拓宽低成本关键词匹配模式,获得更多展现机会。
Ⅲ象限>低转化低消费:放低处理的优先级,先解决其它象限的问题,或尝试短期内放弃低转化低成本而测试转化量提高的方法。从此类词中继续划分子象限,按照2>1>3>4的顺序,漏斗全程调整。
Ⅳ象限>低转化高消费:此类词竞争大,成本高,常亏损,可先尝试降低成本往Ⅰ象限靠。优化后仍无起色则可暂停或删除。
四、对应漏斗分析优化因素
1.展现量影响因素:①账户方面:查看预算、地域、时段、账户结构是否存在不合理;②关键词方面:有消费关键词数量少,关键词类型较窄,需拓词,关键词匹配限制,关键词排名过于靠后(质量度或出价较低)等。
2.点击量影响因素:①账户方面:结构不合理;②关键词方面:排名位置不好(质量度或出价较低);③创意方面:相关性不好,吸引力不够。
步骤1-下载报告
步骤2-数据筛选
步骤3-数据下钻,定位原因
3.访问量影响因素:①访问URL打开速度有问题;②创意与目标页面相关性差;③网站吸引力不够。
测试1-尝试调整创意
测试2-访问URL的更换
测试3-调整网站结构或内容
4.咨询量影响因素:①网站建设方面:充分研究浏览者的兴趣、行为和习惯,保证网站的:美观性/专业性/互动性;②物料选择方面:选择跟潜在客户需求相关的关键词,围绕企业的业务及核心优势撰写创意。
5.订单量影响因素:①客服团队专业知识、沟通技巧、营销意识;②网站订单转化路径;③产品价格,公司经营,售后等方面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08