京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代怎么保护个人隐私
我国大数据应用面临着数据资源难以开放共享、数据安全和隐私急需保护、大数据技术创新人才不足等诸多挑战,其中个人隐私如何保护,是大众最为关注的问题。
事实上,真正好用的大数据技术,应该是用加工实现增值,用分析来指导决策,而非贩卖用户个性化隐私这种原始数据信息本身的低层次滥用。
中兴通讯首席架构师、业务总工程师罗圣美表示:“使用这些数据的企业,其实有两大类,一类是互联网企业,第二类是电信企业。企业有安全保护措施,有技术解决方案,做只针对群体,而不针对个体的信息挖掘,这是应遵循的基本原则。”
率鹏认为,在隐私保护问题上,大数据技术要重点强调符号化和用户特征这两个概念。“符号化,是当我们去识别一个用户时,用和他真实信息不相关的符号标记这个用户。符号通过算法来保证,是单向的识别,使我们能识别出两次登录的是同一个用户,却无法通过此符号反推出该用户在真实生活中的姓名、电话和住址,这就基本享受了大数据带来的优势,同时又规避了信息安全的风险。用户特征,是在大数据时代,企业感兴趣的往往是这个用户的特征,而不是家庭地址、电话号码真正敏感的信息。比如说,我希望知道你是一个20岁到30岁年龄段,生育过子女,有高等教育学历的女性,这些都是你的特征,但是我并不想知道你姓甚名谁,今年多大,有几个小孩。如果在数据使用过程中严格遵循符号化和用户特征原则,我们就能规避掉不良风险。”
除了技术以外,政策和立法才是大数据时代个人隐私保障的重要凭借。2012年12月28日,《全国人民代表大会常务委员会关于加强网络信息保护的决定》审议通过。2013年,工信部根据全国人大的决定,出台了关于互联网和电信网个人信息保护的条例,提出了数据保护的一系列要求。
数据需要保护,数据也需要交易。大数据的保护与交易需要遵循什么样的标准,是当前政策制定者面临的挑战。
张新生说:“有价值的数据是非常重要的资源,但前提是要建立交易规则。我国的几大互联网运营企业都在做大数据分析,并且都想把数据作为可交易的产品,这需要我们尽快建立数据交易有关的法律法规。”
何宝宏认为,目前的大数据分为两类。一类是公共数据,比如政府所掌握的数据,或者公益企业的数据,公共数据面临的是开放和共享的问题。一类是商业数据,商业性数据需交易,因为这是资产,交易产生新的价值。“标准和政策的制定是不断摸索的过程,需要随着市场去探索,我们已经深度地介入到关于目前国内数据交易的活动中,去探讨这方面的政策、标准制定。”
对于用户来说,提高信息安全意识、注意个人隐私保护也十分重要。不过,鉴于大数据时代个人隐私保护的困难程度,已有专家提出了“遗忘”的必要性。牛津大学教授、大数据领域权威专家维克托就在他的著作《删除》中表示,对于人类而言,遗忘一直是常态,而记忆才是例外。然而,由于数字技术与全球网络的发展,这种平衡已经被打破了。大量数字化的私人信息不仅可能在今天被滥用,在几年甚至几十年后仍然可能被滥用。
罗圣美说:“在大数据时代,建议国家相关部门在制定产业政策时,需要重点考虑涉及个人隐私的信息,采取删除、锁定,或者安全加密等多种级别的保密措施,避免个人隐私被检索、发现、滥用和扩散。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10