
大数据时代汽车品牌营销解决方案有哪些
随着移动互联网、O2O和车联网的快速发展,数字类渠道贯穿了消费者选车-买车-用车的全过程。消费者的全面数字化,意味着消费者购车前后的行为均可以通过大数据分析进行全方位挖掘,从而实现在车型研发、产品定位、营销传播和售后服务一系列过程的决策优化,这也成为程序化购买带给汽车品牌营销的一个重要突破。
对于汽车品牌来说,以数据和技术为核心的程序化购买既是挑战,也是重大的发展机遇。汽车品牌需要从以下四个方面,提升营销效率和效果:
一、我的消费者在哪?
随着品牌与消费者的沟通渠道的多样化,如何挖掘隐藏在互联网背后的潜在客户群,成为车企数字营销的首要问题。大数据时代,汽车品牌自身掌握的销售、用户调研等数据已经远不能满足其营销决策的需要,企业所关注的消费者特征和偏好等洞察,完全可通过其自然行为过程中留存的数据进行分析和挖掘。
二、我该如何提升与消费者的沟通效率?
事实上,传统线上营销采用的媒介购买方式,已无法满足消费者的个性化传播。消费者购车到用车是很长一段周期,期间存在诸多不确定性,汽车品牌可根据实时获取的消费者数据,通过程序化购买自动选择适合的媒体和广告位,并借助智能创意实现广告创意、目标人群和媒介的完美整合,而这一系列过程可以在短时间飞速完成。
三、我如何更好的服务客户?
消费者在购车前后的很多行为都会影响着身边的潜在客户,汽车品牌试图通过数字营销及数据的挖掘分析更好的了解消费者的兴趣偏好,来提高线上、线下与售前售后的用户体验,以此提高品牌影响力。
四、我的效果如何评估?
“我的广告费用浪费了一半,但是我不知道是浪费了那一半。“这句广告界名言将在程序化广告的浪潮之下被冲刷殆尽。对一个目标客户从潜客到变成购买客户过程的数据纪录和反馈,对于渠道的预算分配和优化推广渠道的组合是有极大帮助的。
针对汽车营销传播中的四大痛点,悠易互通根据多年服务众多汽车客户的经验以及强大的系统开发和技术开发经验,提出了汽车行业的整体解决方案:
一、 DMP数据打通,支持企业全方位营销策略
悠易互通帮助汽车企业搭建专属数据管理平台(Databank 3.0),收集车企在营销与运营过程中产生的海量线上、线下数据,实现企业第一方数据的聚合管理;并且通过与第三方数据(YOYI DNA)打通,在确保第一方数据安全的前提下,实现数据的互联互通,通过多维度的数据分析与发掘, 帮助车企对其目标消费者进行360度画像,并支持企业全方位的营销决策。
具体来说, 车企可以从各地经销商获取真实的购车用户的基本信息(如年龄、性别、地域等),而YOYI DNA则在全网收集了以用户为核心的横跨网页浏览、搜索、电商购买、社交分享和广告投放的数据,并且采用悠易互通统一的标签体系对各来源数据进行标准化处理和结构化细分,形成了悠易互通自有的第三方数据体系。通过将第一方和第三方的数据打通,车企可以确切知道某款车型的购车者兴趣标签和行为偏好,比如家庭构成、收入状况、经常访问的网站、关注的明星、社交媒体上感兴趣的内容、关注的车型和要素等,真正做到对顾客全面而深入的洞察,并对企业制定营销决策提供数据支持。
二、 整合资源,利用算法提升线上传播效率
汽车互联网传播的主要目的之一是收集销售线索。在程序化购买时代,这就需要DSP能够在整合流量资源的基础上,利用先进的算法对数据进行深挖,从而提高销售线索收集的效率和质量。
车企的专属数据管理平台(Databank 3.0)可以无缝对接到悠易程序化购买平台, 实现老访客召回和根据现有客户进行智能扩展(Lookalike),并借助悠易互通接入的日均130亿多屏海量资源,以及专门为汽车客户定制的算法和优化手段,对每一个展现机会进行CTR和CVR(转化率)的预估,结合智能创意,做到在正确的时间、正确的媒介向正确的人传递正确的信息,为客户的官网引入高质量的访客。
当消费者来到官网后,可以全程监测消费者和品牌的互动过程,从而帮助企业了解消费者在哪里流失,为网站的优化提供指导。同时,根据消费者的访问行为,进行有针对性的召回。例如,针对只了解了车的基本信息,而没有了解车的详细配置、价格信息或金融贷款服务的消费者,可以针对性的采用促销创意将这些访客直接引流到官网的金融方案页面,促进消费者进行预约试驾。
三、 从线上到线下,实现个性化销售和售后服务
通过线上收集到销售线索后,车企的营销重点转移到线下,这就要求车企能够帮助其经销商做到个性化的销售和售后服务。
过去4S门店的销售人员除了潜在客户的手机号、姓名和性别之外,是没有其他信息可以获取的。悠易互通的汽车解决方案通过打通客户线上和线下标签,帮助车企在给经销商下发销售线索时,提供了更为详细的用户信息,如客户的家庭状况、对车型、外观、配置、价格、金融方案的关注程度等。这些信息将极大地帮助销售人员基于客户的画像,展开一对一的个性化销售,从而提高销售线索向实际订单转化的可能性。
消费者购车后,经销商将实际成交的顾客信息反馈给车企,这些信息进入企业数据管理平台(Databank 3.0)。通过对现有用户网络行为、用车行为(车联网数据)的持续跟踪,车企可以更准确地预测现有用户对于维修保养、更换新车的需求,从而制定个性化的营销及售后服务计划,深度挖掘客户的生命周期价值。
四、 效果评估,持续提升营销的整体效率
传统广告投放的效果评估很难控制,程序化购买则赋予了品牌广告主对效果更多的控制权。悠易互通记录了消费者在全网范围内每一次和品牌互动的行为,并对每一个销售线索进行追踪溯源,通过归因模型,评估每一次曝光、点击、搜索行为对形成该转化效果的贡献,从而优化营销预算的分配,提升营销的整体效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07