
大数据时代汽车品牌营销解决方案有哪些
随着移动互联网、O2O和车联网的快速发展,数字类渠道贯穿了消费者选车-买车-用车的全过程。消费者的全面数字化,意味着消费者购车前后的行为均可以通过大数据分析进行全方位挖掘,从而实现在车型研发、产品定位、营销传播和售后服务一系列过程的决策优化,这也成为程序化购买带给汽车品牌营销的一个重要突破。
对于汽车品牌来说,以数据和技术为核心的程序化购买既是挑战,也是重大的发展机遇。汽车品牌需要从以下四个方面,提升营销效率和效果:
一、我的消费者在哪?
随着品牌与消费者的沟通渠道的多样化,如何挖掘隐藏在互联网背后的潜在客户群,成为车企数字营销的首要问题。大数据时代,汽车品牌自身掌握的销售、用户调研等数据已经远不能满足其营销决策的需要,企业所关注的消费者特征和偏好等洞察,完全可通过其自然行为过程中留存的数据进行分析和挖掘。
二、我该如何提升与消费者的沟通效率?
事实上,传统线上营销采用的媒介购买方式,已无法满足消费者的个性化传播。消费者购车到用车是很长一段周期,期间存在诸多不确定性,汽车品牌可根据实时获取的消费者数据,通过程序化购买自动选择适合的媒体和广告位,并借助智能创意实现广告创意、目标人群和媒介的完美整合,而这一系列过程可以在短时间飞速完成。
三、我如何更好的服务客户?
消费者在购车前后的很多行为都会影响着身边的潜在客户,汽车品牌试图通过数字营销及数据的挖掘分析更好的了解消费者的兴趣偏好,来提高线上、线下与售前售后的用户体验,以此提高品牌影响力。
四、我的效果如何评估?
“我的广告费用浪费了一半,但是我不知道是浪费了那一半。“这句广告界名言将在程序化广告的浪潮之下被冲刷殆尽。对一个目标客户从潜客到变成购买客户过程的数据纪录和反馈,对于渠道的预算分配和优化推广渠道的组合是有极大帮助的。
针对汽车营销传播中的四大痛点,悠易互通根据多年服务众多汽车客户的经验以及强大的系统开发和技术开发经验,提出了汽车行业的整体解决方案:
一、 DMP数据打通,支持企业全方位营销策略
悠易互通帮助汽车企业搭建专属数据管理平台(Databank 3.0),收集车企在营销与运营过程中产生的海量线上、线下数据,实现企业第一方数据的聚合管理;并且通过与第三方数据(YOYI DNA)打通,在确保第一方数据安全的前提下,实现数据的互联互通,通过多维度的数据分析与发掘, 帮助车企对其目标消费者进行360度画像,并支持企业全方位的营销决策。
具体来说, 车企可以从各地经销商获取真实的购车用户的基本信息(如年龄、性别、地域等),而YOYI DNA则在全网收集了以用户为核心的横跨网页浏览、搜索、电商购买、社交分享和广告投放的数据,并且采用悠易互通统一的标签体系对各来源数据进行标准化处理和结构化细分,形成了悠易互通自有的第三方数据体系。通过将第一方和第三方的数据打通,车企可以确切知道某款车型的购车者兴趣标签和行为偏好,比如家庭构成、收入状况、经常访问的网站、关注的明星、社交媒体上感兴趣的内容、关注的车型和要素等,真正做到对顾客全面而深入的洞察,并对企业制定营销决策提供数据支持。
二、 整合资源,利用算法提升线上传播效率
汽车互联网传播的主要目的之一是收集销售线索。在程序化购买时代,这就需要DSP能够在整合流量资源的基础上,利用先进的算法对数据进行深挖,从而提高销售线索收集的效率和质量。
车企的专属数据管理平台(Databank 3.0)可以无缝对接到悠易程序化购买平台, 实现老访客召回和根据现有客户进行智能扩展(Lookalike),并借助悠易互通接入的日均130亿多屏海量资源,以及专门为汽车客户定制的算法和优化手段,对每一个展现机会进行CTR和CVR(转化率)的预估,结合智能创意,做到在正确的时间、正确的媒介向正确的人传递正确的信息,为客户的官网引入高质量的访客。
当消费者来到官网后,可以全程监测消费者和品牌的互动过程,从而帮助企业了解消费者在哪里流失,为网站的优化提供指导。同时,根据消费者的访问行为,进行有针对性的召回。例如,针对只了解了车的基本信息,而没有了解车的详细配置、价格信息或金融贷款服务的消费者,可以针对性的采用促销创意将这些访客直接引流到官网的金融方案页面,促进消费者进行预约试驾。
三、 从线上到线下,实现个性化销售和售后服务
通过线上收集到销售线索后,车企的营销重点转移到线下,这就要求车企能够帮助其经销商做到个性化的销售和售后服务。
过去4S门店的销售人员除了潜在客户的手机号、姓名和性别之外,是没有其他信息可以获取的。悠易互通的汽车解决方案通过打通客户线上和线下标签,帮助车企在给经销商下发销售线索时,提供了更为详细的用户信息,如客户的家庭状况、对车型、外观、配置、价格、金融方案的关注程度等。这些信息将极大地帮助销售人员基于客户的画像,展开一对一的个性化销售,从而提高销售线索向实际订单转化的可能性。
消费者购车后,经销商将实际成交的顾客信息反馈给车企,这些信息进入企业数据管理平台(Databank 3.0)。通过对现有用户网络行为、用车行为(车联网数据)的持续跟踪,车企可以更准确地预测现有用户对于维修保养、更换新车的需求,从而制定个性化的营销及售后服务计划,深度挖掘客户的生命周期价值。
四、 效果评估,持续提升营销的整体效率
传统广告投放的效果评估很难控制,程序化购买则赋予了品牌广告主对效果更多的控制权。悠易互通记录了消费者在全网范围内每一次和品牌互动的行为,并对每一个销售线索进行追踪溯源,通过归因模型,评估每一次曝光、点击、搜索行为对形成该转化效果的贡献,从而优化营销预算的分配,提升营销的整体效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18