京公网安备 11010802034615号
经营许可证编号:京B2-20210330
汽车营销中的大数据味道
随着互联网时代的来临,汽车企业的营销策略正在发生着变化,数字营销似乎已经成为汽车企业的必修课。车企营销越来越看重两点:一是是否能够精准到达目标消费群体,二是是否具有较高的潜在客户转化率。
随着互联网时代的来临,汽车企业的营销策略正在发生着变化,数字营销似乎已经成为汽车企业的必修课。车企营销越来越看重两点:一是是否能够精准到达目标消费群体,二是是否具有较高的潜在客户转化率。
实际上,在一些互联网与IT企业那里,数字营销中最为关键的信息已经可以被精准地送达到目标人群,其效果也可以被量化。如在一些网站的搜索引擎上,根据网民对汽车相关产品的关注度,即可知道当下最为流行的整车产品是什么,最为畅销的汽车养护用品是什么,一线城市与二三线或三四线城市关注点有何不同等问题。
真实转化当为先
对于车企而言,在针对人群的精准营销之后,企业最为关注的当属转化率,即把目标人群转化为真正客户的能力。
在前不久于重庆举办的“2015全球汽车论坛”上,来自长安汽车、德勤咨询与汽车之家的几位专家对于车企用大数据建立市场营销的策略谈了自己的看法。
汽车之家副总裁韩松介绍,假设某车主都在长安汽车买了某一款产品。如果用汽车之家的大数据,就可匹配分析出这个用户,在购车前6个月甚至前一年购买了什么品牌产品?关注什么车型?浏览论坛、资讯的时间分别有多长?在这期间一共关注了多少产品?在哪一个阶段决定下订单,最后在哪一个时间点购买完成消费动作。
这一切基于用户的基础分析,最后形成购车属性,它可以帮助主机厂真实还原消费者的决策动机。
其实,基于大数据的场景有三个:检测、发现、预见。韩松讲起了一个经常会发生的现象:“通常情况下,每一个厂商或者他们出的每一款车都会锁定自己的竞争对手。一个非常有意思的现象是:主机厂在前期传播的时候完全选错了对手,而消费者选择的是不同的品牌和几个不同的产品,这样导致厂商在营销策划上有偏差。”
注重数据的完整性与时效性
作为搜索引擎或网站的搜索接口,搜索作为消费者信息主动获取的首选入口,通过借助cookie实现追踪,帮助汽车厂商有效获取消费者行为数据,并借助大数据专业分析技术,实现消费者“画像”,从而有效地实现消费者洞察,让汽车厂商更好地了解目标受众感兴趣的车型,从而能相对精准地把握营销时间、地点来进行广告投放,实现真正意义上的精准营销,这是近几年相当多的厂商经常做的事情。
德勤中国汽车行业管理咨询主管、合伙人何马克博士表示,根据大数据统计的结果,中国有3亿年轻人,都有购买汽车的计划。在国外只有40%的消费者对经销商的体验感兴趣,愿意从经销商那里购买,但是在中国这个数据可能会达到60%。
对于大数据与汽车营销,尤其是潜在消费者能否转化为现实用户的问题,来自长安汽车产品策划部的副部长余成龙博士有他自己的看法:“不管是工业4.0也好, 哪怕是将来进一步发展到更高层次,作为一个企业来说还是要生存,生存的根本就是用户。如果没有用户买单,哪怕这个企业跑得再快,还是没有用。”
对此,韩松表示,汽车之家从一个用户最开始关注车,到选车、用车,关注他/她的整个消费周期,只有把消费者各个环节的行为数据包括互动数据、交易数据都拼凑在一起,才能形成一个完整的“画像”,这样才能在维持和保住客户上具有更加主动的能力。因此,最为关键的除了数据量,还有数据的完整性。
同时,韩松也提醒,大数据如果分散在各个数据公司当中是没有任何价值和作用的。如果某个消费者的各种信息分布在各个相关公司的数据库里,都不能发挥足够的作用。如果大家都以透明开放协作的状态,把这些拼接在一起,才会出现立体的形式。
对于数据的时效性,韩松也表示,可能大数据的结果就是在二三个月之内有用,过了3个月消费者的倾向可能就变了,也就是说之前的结论可能完全是错的。这就需要主机厂在营销应对上,甚至在产品的匹配上要有快速反应机制,而这个机制现在大多数厂商不完全具备。
未来汽车本身也是数据产业
对于包括后市场在内的整个产业链而言,未来汽车产品本身可能将不再是汽车企业的主要盈利点,汽车产品上所搭载的定制化服务,以及用户在使用服务时所产生的行为数据信息,才是未来汽车生态链中的最大盈利因素。大数据企业AdTime认为,以分析用户需求为目的客户“画像”是目前很多汽车企业正在探索的方向。
汽车数据营销通常是多方面的,一是利用汽车营销数据来提升经营效益,帮助汽车企业实现更高的销售效率,同时简化内部规划和执行流程;二是优化跨渠道的客户体验,开辟多渠道来获悉用户体验方面的信息,并集中进行整合与分析,创造出新的服务模式;三是基于用户信息进行的数据增值性服务尝试,比如汽车企业可通过用户信息,预测车辆将要去哪儿以及去的原因,从而为用户提供合适的服务和广告资讯。
AdTime认为,汽车大数据的定制化推送服务能够成为现实,汽车将成为互联网时代的另一种重要终端,未来可能改变的将不仅是汽车行业的商业模式,还将带动更多消费类行业的营销渠道。同时,这种基于汽车数据的互联互通,会为智能车载和交通互联以及车联网的实现提供基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16