京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据工程师有“钱”途,你要先练好这些内功
大数据是眼下非常时髦的技术名词,与此同时自然也催生出了一些与大数据处理相关的职业,通过对数据的挖掘分析来影响企业的商业决策。
这群人在国外被叫做数据科学家(Data Scientist),这个头衔最早由D.J.Pati和Jeff Hammerbacher于2008年提出,他们后来分别成为了领英(LinkedIn)和Facebook数据科学团队的负责人。而数据科学家这个职位目前也已经在美国传统的电信、零售、金融、制造、物流、医疗、教育等行业里开始创造价值。
不过在国内,大数据的应用才刚刚萌芽,人才市场还不那么成熟,“你很难期望有一个全才来完成整个链条上的所有环节。更多公司会根据自己已有的资源和短板,招聘能和现有团队互补的人才。”领英(LinkedIn)中国商务分析及战略总监王昱尧对媒体说。
于是每家公司对大数据工作的要求不尽相同:有的强调数据库编程、有的突出应用数学和统计学知识、有的则要求有咨询公司或投行相关的经验、有些是希望能找到懂得产品和市场的应用型人才。正因为如此,很多公司会针对自己的业务类型和团队分工,给这群与大数据打交道的人一些新的头衔和定义:数据挖掘工程师、大数据专家、数据研究员、用户分析专家等都是经常在国内公司里出现的Title,我们将其统称为“大数据工程师”。
王昱尧认为,在一个成熟的数据驱动型公司,“大数据工程师”往往是一个团队,它意味着从数据的收集、整理展现、分析和商业洞察、以至于市场转化的全过程。这个团队中可能包括数据工程师、分析师、产品专员、市场专员和商业决策者等角色,共同完成从原始数据到商业价值的转换—概括来讲,这是一个支持企业做出商业决策、发掘商业模式的重要群体。
由于国内的大数据工作还处在一个有待开发的阶段,因此能从其中挖掘出多少价值完全取决于工程师的个人能力。已经身处这个行业的专家给出了一些人才需求的大体框架,包括要有计算机编码能力、数学及统计学相关背景,当然如果能对一些特定领域或行业有比较深入的了解,对于其快速判断并抓准关键因素则更有帮助。
虽然对于一些大公司来说,拥有硕博学历的公司人是比较好的选择,不过阿里巴巴[微博]集团研究员薛贵荣强调,学历并不是最主要的因素,能有大规模处理数据的经验并且有喜欢在数据海洋中寻宝的好奇心会更适合这个工作。
除此之外,一个优秀的大数据工程师要具备一定的逻辑分析能力,并能迅速定位某个商业问题的关键属性和决定因素。“他得知道什么是相关的,哪个是重要的,使用什么样的数据是最有价值的,如何快速找到每个业务最核心的需求。”联合国[微博]百度[微博]大数据联合实验室数据科学家沈志勇说。学习能力能帮助大数据工程师快速适应不同的项目,并在短时间内成为这个领域的数据专家;沟通能力则能让他们的工作开展地更顺利,因为大数据工程师的工作主要分为两种方式:由市场部驱动和由数据分析部门驱动,前者需要常常向产品经理了解开发需求,后者则需要找运营部了解数据模型实际转化的情况。
你可以将以上这些要求看做是成为大数据工程师的努力方向,因为根据万宝瑞华管理合伙人颜莉萍的观察,这是一个很大的人才缺口。目前国内的大数据应用多集中在互联网领域,有超过56%的企业在筹备发展大数据研究,“未来5年,94%的公司都会需要数据科学家。”颜莉萍说。因此她也建议一些原本从事与数据工作相关的公司人可以考虑转型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08