
大数据分析价值渐现 企业应用需以客户为中心
在全球化的过程中世界已经变成了一个平面、一张网、一朵云,在其中数据就像血液一样不停的流动着。对于企业而言大数据分析可以很好地优化业务,在降低成本的同时提高用户体验,当然大数据分析应用到具体企业时也需要根据不同的业务特性进行结合,未来企业中以客户为中心的大数据应用将成为重点方向。
大数据分析辅助业务转型
温水煮青蛙的故事估计很多人都知道,在安逸的环境中很容易缺乏危机意识,企业也是相同,但如何才能不做温水青蛙?
企业中已经有越来越多的高管开始关注IT,不仅限于CIO。而在信息爆炸的年代,企业需要更多的数据科学家来进行数据分析,甚至一些企业还设立了CDO(首席数据官)的职位,对大数据和分析进行单独的管控。
这相对于没有数据提供参考往往依靠直觉和过往的经验作出决策的企业,他们有个大的几率走进不可挽回的误区,而利用大数据和分析则可以更好、更快速的对业务和市场把脉。
2014年4月埃森哲调查了全球高管眼中大数据的最大作用,其中89%的高管认为大数据会彻底改变做生意的方式,就像互联网一样,他们还相信会有其他巨大变化。
业务转型是目前大多数企业的普遍需求,大数据分析不仅可以优化访问、加快决策、最大程度提高可用性,还可以辅助业务转型。但企业在使用大数据分析时也并没有想象的那样简单,使用其实现业务转型需要注意三点:
一、决策文化改变,以数据驱动决策
二、确保分析数据的安全性和准确性
三、大数据分析平台应用
越来越多的企业已经意识到之一点,但企业的种类多种多样,针对于不同企业业务大数据分析应用也有所不同。所以未来企业需要在了解业务的同时,将业务与大数据分析进行结合,以创造更多价值。
大数据应用与业务相结合
目前在传统行业中金融、电信、政府、交通、医疗已经成为大数据分析使用的主力。
以金融行业为例,通过大数据技术可以把银行的一些历史数据转换成活数据加以利用。当然金融企业也在尝试利用社交媒体的信息进行分析,这可以了解不同区域的用户对于理财的需求,以便企业可以基于不同区域提供符合该区域特色的理财服务。
民生银行作为中国第一家主要由非国有企业创办的银行,年交易量和客户账户数量正在以50%和30%的速度增长。面对持续的高速增长,其所有业务都面临着如何快速响应客户和保证7*24小时可用性。
民生银行意识到要解决业务不断增长带来的问题,就必须彻底改造现有银行系统和基础设施,尤其是原有银行系统已经越来越缺少灵活应对市场变化和客户需求的能力。
民生银行通过SAP银行业解决方案以单一面向服务的架构(SOA)平台交付,提高银行交易流程的灵活性。在硬件上配以IBM AIX操作系统的IBM Power 780服务器。借助先进的 IBM POWER7+TM处理器技术, 支持最为严苛的工作负载,具备大型机的可靠性和可用性。
民生银行还采用了IBM PowerVM虚拟化技术充分利用服务器资源,将多个应用合并到一个服务器上,提供更加灵活、动态的IT基础设施。使其可以迅速响应不断变化的业务需求,加快产品和服务的迭代速度。
同时利用IBM DB2高可用性灾难恢复(HADR)功能防止数据库中的数据丢失,并且保证故障后的款塑恢复,时间低于五分钟。
民生银行只是其中一个案例,还有更多的企业正在使用着大数据分析帮助企业决策,提升用户体验,并以客户为中心造就越来越多的新型商业模式。
总结:
各行各业都开始大数据的应用已经毋庸置疑,这也让大数据分析对于企业基础架构的挑战同样迫在眉睫。IBM的服务器和存储架构则可以有效帮助企业解决大数据分析中存在的可靠性、可用性等诸多问题。支持安全共享的方式访问数据,对不同工作负载进行快速分析,以及最大程度提高信息的可用性,并且针对企业的行业属性和具体业务,制定相关的行业解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22