京公网安备 11010802034615号
经营许可证编号:京B2-20210330
DT数据时代,数据本身才是问题所在
最近和一些互联网企业交流,无论所在什么细分行业,在数据分析方面的动向可以总结为两类:或在寻找专业的第三方数据分析产品,或在寻找能lead组建数据分析团队的候选人。看来马云说的“人类正从IT时代走向DT (Data Technology) 时代”,所言不假。毋庸置疑,数据的重要性正在逐渐被认识到。而谈起数据分析团队耗时最多的一件事情,无它,唯独数据的采集、清洗、整理。是的,太多采集到的数据需要整理,另外还有更多的数据需要去采集。
很多互联网企业的业务都在飞速发展中,业务规模和产品都有很大的变更,产品经理或者数据分析师都很难在当下预测下个月甚至下一周的数据需求,要看数据的时候没有数据,而采集数据需要耗费业务人员与工程人员较高的沟通成本,更甚者还涉及产品的版本发布协调排期;或者产品已经上线,但发现采集的数据是错误的,对于众多app来说,只能等下次发版。总之,数据的供给总不是满足不了业务的需求。以上场景还只是管中窥豹,但可以充分说明一点,数据的采集,清洗和处理已经耗费了大量时间,而数据源头的堵塞又会进一步影响需要需要数据来支撑的业务决策的效率。
从另一个维度来看,企业内部会有销售、市场、产品、运营、财务等不同部门,不同的部门在使用着传统ERP、CRM或各类SaaS软件,这些数据在不同的软件里流动,相互之间完全断裂,数据大而不可通用。最近GrowingIO的一些客户反馈,他们内部有完善的后端交易数据,客户属性数据,这些还是具有远见的老大在早期就开始筹备和收集,但是一段涉及到客户进行数据分析的时候,同样只得无奈,因为这些相对更新频次较低的后台数据无法实时反馈客户当前的情况,对于一个半年前已经购买SaaS产品的客户,如何能了解到他当前的使用状况和对产品的满意程度?后端数据需要与更实时的用户行为数据结合才能反映实际问题。是的,前后端的数据需要打通,更大的价值才能产生。
越来越廉价的硬件,以及云的逐渐普及,使得拥有大量的数据对很多企业来说并不是难事。TB、PB这些曾经的海量数据单位,很多企业已经轻松跨越。但事实是,大量的企业将无数的时间、人力投入在海量数据的清洗整理和不同平台数据的聚合上。要知道原始数据是混乱和无效的,并不能直接地传达信息,更不代表决策和洞察。所以数据量越大,清洗和数据整理反而成了一项极其浩大而低价值的工作。而真正的价值,数据的分析,商业的洞察又必须建立在完成这些数据采集,清洗,管理,存储等等一系列浩大的工程之后。
大部分企业将90%的时间花在埋点、标签规范、数据存储、管理、ad-hoc分析等低价值但是费时费力的事情上,而真正产生数据价值的业务分析只需要10%的时间,但是鲜有企业能够达到。
或者即便达到,却需要经过一段长期的煎熬,无法快速达到数据分析反哺业务的阶段。这产生的后果是灾难性的,因为大量的决策是凭着直觉和经验做出来的。但是今天互联网圈的竞争和发展速度一日千里,无论是企业的高层管理者还是一线的PM,业务人员都需要快速地通过数据来反哺业务,做出有效的决策并快速行动。前段时间拜访某大型互联网公司负责人,作为创始人兼CEO的大佬开玩笑谈到:“回想过去几年的发展,仿佛是闭着眼睛开飞机,而且边开还要边修飞机,能快速发展到今天是幸运的。未来继续做大做强,一定要合理的通过数据来决策。”
绝大部分的企业,在意识到要用数据驱动业务之后,数据量开始从B到TB,甚至到PB的增长,但却反而淹没在大量的数据中。这并不是方向错误,而是真正搭建一个好的数据分析基础太难,从技术架构,平台搭建,业务梳理,数据采集,商业分析,知识和技术跨度巨大,就像金字塔,每爬一个台阶都需要大量的投入。然而即便勤奋也是不够的,因为你需要一个了解技术框架,能理解业务以及具备强大数据分析能力的人来领导这样一个团队。但这样的人才,在国内拿望远镜也找不到。千兵易得,一将难求。
在美国,数据分析是一个相对成熟的产业。在每个环节——数据采集,不同来源的数据聚合整理,BI可视化,甚至市场、销售、产品等每个维度,都有许许多多的公司能提供专业性服务。根据产业研究公司Wikibon在国外的数据研究显示,在企业对数据工具投资当中,有52%的资金流向了用于采集和组织数据的技术之上,让数据的获取和分析变得更容易。但在国内,一定是远远达不到这样的数据。一方面是企业对数据的认识,数据驱动业务的实践摸索当中,企业负责人的认识还不够成熟,另一方面是真正能够提供专业服务的公司还不如美国成熟,缺乏专业的产品和服务。
DT时代来临,企业应持具有远见的战略眼光迎接这个时代,充分利用数据的价值来驱动企业的健康和持续成长,但同时也应该意识到,“大”的数据本身也是问题。如何乘势而上,需要借助专业外部产品和团队,尽可能地解决可以通过外部解决的问题,让数据分析师和业务人员将更多精力花在业务分析和数据决策以及行动上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15