
大数据已经成为预测社会与经济走向方面的绝对利器——然而其极高的信息使用量与综合分析流程恐怕会彻底抹杀如今我们最为看重的隐私权。
随着企业间竞争日趋白热化,对数据的攫取与分析之强烈已经达到令人震惊的地步。迅速成长的数据收集业务开始以互联网用户的日常活动作为结论的支持材料,但这种无孔不入的疯狂探求令我们最个人化的行为都暴露在他人面前。
除了在宏观上构建社交模式及经济走向,大数据还能根据个人用户不经意间生成的原始数据描绘出对方生活的状态。
Target公司的客户关系分析工具借助大数据意外发现某位年轻女孩怀孕的秘密,而这一结论源自这位女孩在Target连锁店中的购物记录。尽管她(和她父亲)并没有向Target直接提供信息,但店面中的数据采集工具根据购买习惯推测出了她怀孕的事实,并以购物手册的形式向她推荐一系列相关产品——正是这本小册子让即将成为爷爷奶奶的两位家长目瞪口呆。
Facebook与谷歌同大数据的关系
Facebook的数据团队一直对网站上提供的发布信息进行分析,这种庞大数据量之下所蕴含的预测能力在深度与广度方面无人能及——这也成为研究人员、广告商以及各政府机构掌握状况的有力武器。
该团队通过用户对于歌曲风格的偏好判断对方的当前关系状态,并通过此类数据预测更为广泛的社会行为模式。在某个例子中,数据团队尝试通过一种算法归纳世界各地人民的“幸福指数”,所得到的结果确实能与当时真实世界中的某些大事件进行印证。
与此同时,谷歌公司在通过了引发无数争议的隐私政策修订之后,无处不在的互联网服务几乎令这家企业成为人类信息的总资源库,这就使得其信息为政府所用的日子为时不远。尽管最近谷歌刚刚通过网站对政府部门急于获取用户个人信息的举动表示抗议,但他们仍然指出未来谷歌会继续帮助国家掌握百姓的日常行为。
各国政府与大数据
世界各国政府对于个人数据的处理方法有所不同。美国政府正在采取措施,希望通过社交媒体收集个人资料,借以监控潜在的犯罪活动并改善国土安全保障工作。
美国国务院最近还要求软件开发人员打造一款工具,借以更便捷地对来自谷歌、Facebook及Twiiter等网站的数据进行分析,最终达到服务国家的目的。这一决定显示出政府方面对于收集并使用个人数据的强烈意愿。
而且国务院绝不是美国政府中惟一对个人资料紧追不放的机构——FBI甚至打算通过修改代码对社交媒体加以窃听。随着美国政府参与Stuxnet及Flame两款病毒制作的消息甚嚣尘上,很明显官方已经从网络监控中尝到了甜头,而在未来他们对个人数据分析的热情也必然会持续升温。
但随着公民对于自身安全保障的迫切需要,这些监控活动很可能与隐私保护产生冲突,由此引发的矛盾与争论可能比单纯的隐私权话题更难以平息。
大数据中的“大玩家”们如何对待个人信息
数据的生成方式并不一致,很多大数据玩家都会刻意避开个人信息的介入,而不像谷歌和Facebook那样来者不拒。Factual公司就在数据分析业务中有意将个人信息加以剔除,其公关代表Kathryn Huff在解释这种差别时指出“本公司专注于秉持正确的数据收集及切入点。”
然而与Factual不同,包括Spokeo在内的很多企业则毫无节操地直接进行个人数据交易,并在客户行为报告中加入很多令人难以接受的极端细节。举例来说,他们会在针对个人客户的档案中引用有关家庭成员及业余爱好的图片。这种规模化数据收集所产生的负面影响令人震惊,并可能在侵犯隐私权的同时降低企业的信用评分。
美国联邦贸易委员会曾经对Spokeo这种人神共愤的数据收集方式处以罚款,但该公司依然我行我素,可谓记吃不记打。
大数据收集如何应对COPPA(儿童在线隐私保护法案)
COPPA,全称为儿童在线隐私保护法案,要求企业不得收集13岁以下儿童的在线数据及行为细节。但由于该法案的约束对象不包括政府机关及非营利组织,这就使得儿童的网络行为信息仍然在包括美国政府在内的众多机构面前暴露无遗。
像Facebook与Collective Intellect这样的企业倒是属于法案约束的直接对象,但他们遵守规定的效果却很难令人信服。Facebook从技术层面上只允许13岁以上的用户建立账户,但事实上小朋友们利用各种方法避开了这一限制。另外,由于社交媒体自身有吸引年轻用户的意愿,所以改变现有数据收集方式才是解决问题的根本方法。
未来会怎样?
这些企业需要找到一条通过个人资料赚钱的道路,否则庞大的信息只会占用基础设施资源而无法带来任何收益。这对于普通用户及其隐私数据意味着什么?
首先,我们应该清醒地意识到针对个人习惯所开展的广告攻势已然铺天盖地,而这一趋势在未来还将持续加剧。网站以营利为目的,因此在需要时他们肯定会把有价值数据作为利益交换的筹码。届时广告公司将以针对用户需求为噱头大肆宣传,收集并分析个人消费习惯的做法也将成为常态。
此外,政府方面也会出于各种目的而继续整理并分析个人资料;虽然以Twitter为代表的一些社交媒体网站已经针对用户数据保护做出多方努力,但这种情况几乎不可能放缓乃至停止。换言之,开放性与流通性将成为个人资料的重要属性。
大数据,特别是个人数据分析,正在一步步吞噬公民的隐私权。如果没有来自政府及谷歌、Facebook等各大主流网站的决定性政策变更,这种趋势将成为互联网的固有特性,并在未来继续保持下去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07