京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代商业的未来:大数据+O2O值得好好研究
O2O即Online To Offline(在线离线/线上到线下),是指将线下的商务机会与互联网结合,让互联网成为线下交易的前台,这个概念最早来源于美国。O2O本质上是一种通过PC互联网、移动互联网与传统行业结合,衍生出更多新的商业模式和消费模式。一般被理解为Online To Offline,也有人将其理解为Offline To Online。O2O的概念非常广泛,既可涉及到线上,又可涉及到线下,可以通称为O2O。
近两年O2O创业公司受到了资本和市场的热捧,其中,租车和外卖又是风口,成为最受关注的领域。例如成立于2009年的饿了么,2014融资3.5亿美元,估值过10亿美金;美团融资7亿美元,估值70亿美元;UBER据说在即将启动的新一轮融资中,预计估值高达500亿美金。其它的外卖项目也轻松获得了数千万到上亿人民币的投资,与传统行业相比很不起眼的外卖公司为何能得到天价估值?
百度200亿砸O2O 意在大数据?
2015年6月30日上午,百度糯米正式发布“会员+”O2O生态战略,百度CEO李彦宏在会上表示,百度糯米是百度在移动时代“连接人与服务”战略中最需要着力发展的业务,未来3年内,百度将向糯米业务增加投入200亿元。
大家只看到了百度要做的表面工作,而没有发现,他们已经在未雨绸缪地布局未来商业大数据的信息收集整理工作。更不客气一点说,百度的这次布局,无异于跑马圈地,若布局成功,将把百度带入几何膨胀的体量。
对百度而言,我们上边提到的会员+必然只是一个表面现象,百度一定正在依靠糯米做一个很大的文章。会员+的战略,百度方面虽然重点强调,与所有商家,甚至于所有派系,包括阿里系/腾讯系/小米系等,愿意全部共享合作,但百度掌握了一项最基本的“核心科技”,那便是,百度对会员资料的大数据分析能力。这种垂直化的消费分析能力,于未来商业行为中,是最值钱的。百度发展会员+的内涵实质也正在此处。
大数据与O2O
众所周知,大数据和O2O都是当今的时髦名词,据《2013电商十大新发展趋势》报告,大数据在排名中名列第3,O2O名列第5,可以说是炙手可热。但这只是电商的排名,如果在传统行业“大数据”与“O2O”强强结合,那又该是个怎样的场景?
《2013电商十大新发展趋势》关键词:
大数据——排名第三
创新指数:★★★★
难度指数:★★★★★
综合评定:9分
大数据时代已经到来
对于电商行业来说,数据的重要性毋庸置疑,围绕着大数据,数据仓库、数据安全、数据挖掘和分析已经成为未来电商企业的制胜关键和利润焦点。淘宝和京东都着重强调了一点,那就是在未来,数据越来越为重要。大数据的应用价值和潜力越来越为人所知,大数据对于电商企业来说,是一个正待开采的金矿,而从中挖到金子还是沙砾,这便取决于一家企业是否有足够优秀的数据挖掘和数据分析的人才了。总之,大数据的分析和使用对于未来的电商企业重要性不言而喻,这也将是电商发展的持续的大趋势之一。
O2O——排名第五
创新指数:★★★★
难度指数:★★★★
综合评定:8分
O2O将线下商务的机会与互联网结合在了一起,这样线下服务就可以用线上来揽客,消费者可以用线上来筛选服务,还有成交可以在线结算,很快达到规模。中国电子商务市场的O2O经过了漫长而曲折的摸索之路,线上和线下的打通,将会开拓出一个巨大的消费市场,因此,可以断定,O2O具有非常光明的前景。O2O正在引领着一场电商变革,线下的服务可以在线上进行支付,线下商户也终于可以像电商企业一样查看具体的营销效果,这个正在逐渐形成的生态圈中,将会吸引更多的线下商户将其业务和线上有机融合,这将形成一个巨大的O2O产业链。
虽然在具体的实施上还有尚待完善的地方,但可以看到的是,这种消费者可以线上选定商品,在实体店体验后下单购买,也可以在门店实现自提、退换货、售后服务相关功能的模式,将会为网购用户提供更多的好的体验和保障。随着更多的线下商家的参与和更多样式服务的提供,O2O在未来有着不可估量的前景,值得为之拭目以待。
如何用好“大数据+O2O”值得好好研究
有了O2O,传统行业就有了与互联网绑定的机会,就有了获取营销海量数据的基础,从而传统行业营销领域的大数据管理才有可能。在O2O的基础上,传统行业的大数据不再是星星之火,而是星火燎原,当然“大数据”和“O2O”的结合的优势还不只如此。
当有了O2O的条件之后,客户在线上交易,线下交付,只要触网,这些关于“人”的信息的自动化采集就有了可能,再辅以大数据的分析技术,那些美好的愿望将不再是憧憬。我们不会幻想用户在网站上注册时给的都是真实的信息,但我们可以从用户的网络日志、相片分析出其家庭结构和年龄性别,可以从用户的QQ、FACEBOOK分析出其朋友圈和职业结构,可以从用户的社区网站得知其兴趣爱好等等。就这么一个点一个点地填补,一张活生生的画像就这么渐渐成形。当有了这些信息的时候,我们的营销、客服、产品研发等,还会那么如履薄冰吗?
维克托·迈尔·舍恩伯格在《大数据时代》描述了大数据的三个特征,其中第三个特征——“不是因果关系,而是相关关系”。关于这个论点,学术上也有颇多不认同的争鸣之声。从上文也可以看出与舍恩伯格观点径庭之处:这里更强调“因果关系”,通过“大数据”与“O2O”的结合,前者进行数据分析,后者解决数据采集,从而找到经营结果的真正动因,这样把“业务”和“人”的数据都囊括其中,我们当然也就对未来的销售预测与引导有了把握。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07