京公网安备 11010802034615号
经营许可证编号:京B2-20210330
通过BBVA信用卡支付的例子详解了云计算中的低延时方案。
以下为文章全文:
使用信用卡进行支付的款项是巨大的,但是很明显,通过分析所有的交易,我们也可以从数据中得到内在的价值。比如客户忠诚度、人口统计数据、活动的受欢迎程度、商店的建议和许多其他的统计数据,这对商家和银行来说都是非常有用的,可以改进他们与市场的联系。在Datasalt,我们已经与BBVA银行合作开发了一个系统,该系统能够对多年的数据进行分析,并为网络应用程序和移动应用程序提供不同的方案和统计资料。
我们除了需要对面处理大数据输入这个主要挑战外,还要面对大数据的输出,甚至输出量比输入量还要大。并且需要在高负载下提供更快捷的输出服务。
我们开发的解决方案中有一个每月只需几千美元的基础设施成本,这要感谢使用的云(AWS)、Hadoop和Voldemort。在下面的内容中,我们将解释所提出的架构的主要特点。
数据、目标和首要决定
该系统利用BBVA的信用卡在世界各地的商店交易信息作为输入源的分析。很明显,为了防止隐私问题,数据是匿名的、客观的和分离的,信用卡号码被切割。任何因此而产生的见解总是聚集,所以从中得不出任何个人信息。
我们计算每个店和每个不同的时间段的许多统计资料和数据。以下是其中的一些:
·每家店铺的付款金额的直方图
·客户端的保真度
·客户端人口统计
·商店的建议(在这购买的客户还购买了……)、过滤的位置和商店类别等
该项目的主要目标是通过低延迟的网络和移动应用提供所有这些信息到不同的代理(商店、客户)。因此,一个苛刻的要求是要能够在高负载下能够提供亚秒级延迟的服务。因为这是一个研究项目,还需要在代码和要求需要处理方面有一个高度的灵活性。
由于更新的数据只能每一次并不是一个问题,我们选择了一个面向批处理的架构(Hadoop)。并且我们使用Voldemort作为只读存储服务于Hadoop产生的见解,这是一个既简单又超快的键/值存储。
平台
该系统以Amazon Web Services为基础建立。具体地说,我们用S3来存储原始输入数据,用Elastic MapReduce(亚马逊提供的Hadoop)分析,并用EC2服务于结果。使用云技术使我们能够快速迭代和快速交付功能原型,而这正是我们需要那种项目。
体系架构
该架构具有三个主要部分:
·数据存储:用户保持原始数据(信用卡交易)和得到的Voldemort商店。
·数据处理:Hadoop的工作流程在EMR上运行,执行所有计算并通过Voldemort创建所需要的数据存储。
·数据服务:一个Voldemort集群从数据处理层提供预先计算好的数据。
每一天,银行上传在那一天发生的所有交易到S3上的一个文件夹中。这可以让我们保留所有的历史数据——每天所有的信用卡执行的交易。所有的这些数据都被输入处理层,所以我们每天都会重新计算一切,之后再处理这些数据,我们就能够非常灵活。如果需求变更或如果我们找到一个愚蠢的错误,我们只需要在下一批中更新项目代码和所有的固定数据就可以了。这让我们作出了一个开发的决定:
·一个简化代码的基础架构
·灵活性和适应性的变化
·易于操作的人为错误(刚刚修复的错误,并重新启动的过程)
每天,控制器都会在EMR上启动一个新的Hadoop集群以及启动处理流程。这个流程由约16组MapReduce工作组成,计算各种方案。最后的一部分流程(Voldemort索引)负责构建稍后会部署到Voldemort的数据存储文件。一旦流程结束,得出的数据存储文件就会上传到S3上。控制器关闭Hadoop集群,并发送一个部署请求给Voldemort。然后,Voldemort会从S3上下载新的数据存储,并执行一个热交换,完全取代旧的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03