
微信运营之数据分析整理
在微信运营的过程当中,文章的UV直接影响到内容的扩散程度和受众。除了从内容层面专心做好文章之外,我们还能够从数据当中获取到哪些相关信息呢?以下结合最近工作当中的数据分析,做一些整理。
基础指标 :
内部UV:公众号的粉丝查看文章的UV
外部UV:非粉丝,通过转发而看到文章所产生的UV
内部粉丝阅读率:内部UV/前一日的粉丝总量
在没有运营活动影响的前提下,我们所运营的微信公众号的文章阅览量呈现从周一到周日低开走高,到周日达到顶峰的效果。
对于这一情况,我们给出的可能性解释是:大家的忙碌程度通常随工作日递减,因而周末可能比周一有更多的粉丝阅读者。
结合这一经验数据,就可以调整我们发文的节奏:对于那些话题性较高、传播性较强的文章,最优选的方式是放在周四以后发布。在不明显改进文章质量的情况下,最大化文章的内部UV。
讨论文章阅览量的时候,有一个大前提,即:人们的注意力是有限的。那么,作为微信运营者在发布文章和活动的时候,就应该尽量避免同热点活动相冲突。
近期最典型的例子就是双十一:双十一期间,我们按照既有频率发布了系列文章,这些文章的UV无论在同比和环比都有明显的下降,降幅逾50%。
这不正是汪峰上头条的节奏么?尽管处心积虑准备,却依然被半路杀出的程咬金抢了风头。
在微信推广当中,我们采用了地推、新榜微博易投放、微信MP投放、微信公众账号内活动等方式来增加粉丝量。如何衡量各个渠道的有效值呢?
我们采用的指标有:
次日留存;2-7日活跃;7日后留存、7日后活跃;单个增粉成本&单个用户的付费金额等指标。
例:
最近做了各渠道用户付费金额的统计表,来自集赞有礼渠道的用户因为其用户基数大,所以贡献的消费总金额较高,但是平均到单个用户上,即单个用户的付费金额就相当有限了。这也从侧面印证了:对于垂直性微信公众号,集赞有礼未见得是一个好方式的结论。
微信公众号的售卖和运营活动通常有一些固有的节奏,那么在运行一段时间之后,就往往容易观测出一些稳定的波动情况。找到造成那些波峰的售卖or运营活动,成为了最简洁可复制的模式。
例如,对于我们的受众来说,微课通常能够引起一批流量的高峰;而通过提前预热、课前报名,课后回顾的方式,能够将一节微课的效益放大到多天,形成更经济、良好的效果。
又比如,在售卖商品的过程上,是打包卖package的方式效果更好,还是以头条带爆款的方式更好,在不同的微信公众号上是有不同的体现的。不一而足,不再赘述。
数据异常可能是潜在的机会,也会是潜在的问题。通过及时关注数据异常,见微知著、一叶知秋。
周环比数据是我们最值得关注的点。每个月,以上月的平均数据作为基础考量KPI,对比各项指标的波动情况,其中:
1)整体互动方面,用户在一日的使用上,有明显的分布。我们对于自身产品的认知,峰值应该出现在晚上;但实际的效果来看,用户在每天清晨也有一个产品使用的高峰。那么,一旦充分挖掘并推广这批用户的使用习惯,就给我们的产品带来了新的使用场景和机会。
2)文章的平均阅读量依靠编辑的素养和判断力,但文章突发的高 或者 突发的低都值得分析和利用。
对于突发的高,可以尝试复制此类题材,试验用户的偏好性;
对于突发的低,则首先应该先查看下当日有无冲突的热点事件,其次再排查文档的调性问题。
3)销售方面,订单量、订单金额分布是两个值得关注的指标。
例如,最近我们公众号接连做了:一元夺宝 和 活跃老用户达成任务支付邮费体验产品两个活动。这两个活动单从订单量上来说是有正收益的,但是从订单金额来说,是整体拉低订单金额的。
那么,对于销售方面的分析,就应该将这两场活动摘除出去,才能更好的评估销售效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16