
基于大数据的征信:征信中心VS互联网金融企业
什么是大数据?
大数据产生的背景是整个社会走向数字化,特别是社交网络和各种传感设备的发展。云计算和搜索引擎的发展,使得对大数据的高效分析成为可能,核心问题是如何在种类繁多、数量庞大的数据中快速获取有价值的信息。
大数据是一个新概念,英文中至少有三个名称:大数据(big data)、大尺度数据(big scale data)和大规模数据(massive data),至今未形成统一定义。但一般认为大数据具有四个基本特征(即所谓4V特征):数据体量庞大(volume)、价值密度低(value)、来源广泛和特征多样(variety)、增长速度快(velocity)。根据大数据的表现形式与具体内容,可以将大数据分为三类:第一类是记录数据,其中每个记录包含固定的数据字段(或属性);第二类是基于图形的数据;第三类是有序数据,包括时序数据、序列数据、空间数据。
大数据分析的主要任务是什么?
大数据分析主要有两类任务:第一类是预测任务,目标是根据某些属性的值,预测另外一些特定属性的值。被预测的属性一般称为目标变量或因变量,被用来做预测的属性称为解释变量和自变量;第二类是描述任务,目标是导出概括数据中潜在联系的模式,包括相关、趋势、聚类、轨迹和异常等。描述性任务通常是探查性的,常常需要后处理技术来验证和解释结果。这两类任务,又可以细分成七种:分类、回归、关联分析、聚类分析、推荐系统、异常检测、链接分析。
大数据在金融领域的整体应用情况如何?
数据是金融机构的核心资产。处理信息不对称和规模效益是金融机构的两大特点,而这两大特点都要求金融机构拥有大规模、高质量的数据。大数据改变了传统数据及其分析方法,对金融领域产生了重要的、甚至革命性的影响。这主要体现在大数据给传统金融中介提供了新的分析工具,使得传统金融机构能够利用大数据丰富客户资源、开拓新的市场、并提升内部管理和运营水平。
在大数据条件下,金融机构可以采集并应用图片、视频、社交网络信息等非结构化数据。比如交通银行信用卡中心应用智能语音云产品对海量语音信息进行处理,从语音数据中提出丰富的客户信息,包括客户身份信息、客户偏好信息、服务质量信息、市场动态信息、竞争对手信息等。每天处理数据量达到5000小时、20GB,使得历史语音检索花费时间从3-5天缩短为5分钟,极大的加快了处理能力。
大数据使得金融机构产品营销具有更好的精准性。通过大数据分析,使得原本因果关系不清晰的几个事务关联起来。比如,中信信用卡中心利用大数据发现周末18:00之前加油的客户有相当比例去中心城区吃饭,因此信用卡中心与城区的烤肉店进行合作,由银行向加油站客户投放广告,促进信用卡消费。
大数据同时创造了新的金融业务模式。比如说应用大数据理念的京东模式。2012年,京东通过与中国银行合作,推出“供应链金融服务”,供应商可以凭借其在京东的订单、入库单等向京东提出融资申请,由京东经过大数据分析、核准后递交银行,再由给予放款。据报道,此服务可以帮助京东供应商大幅度缩短账期,资金回报率由原来的60%左右提高到226%。
目前,大数据还在金融机构舆情分析、360度客户全景视图、运营日志分析、客户欺诈和风险监控中得到广泛的应用。
征信大数据来源:征信中心VS互联网金融企业
现有的征信大数据主要来源于银行,主要是对已有贷款客户的信用记录。比如中国人民银行征信中心的大数据主要来源于如下:金融机构采集的客户贷款信用交易信息和对信用主体有直接、明确影响的非信用交易信息,而且以金融行业的信贷数据为主、非信用交易信息为辅,具体包括五类。
征信中心的数据来源
互联网金融企业的数据来源于核心业务,主要是初始的核心业务,但也有一些公司通过客户授权的关联账户取得数据信息。例如,百度主要拥有两种具有优势的大数据:以用户搜索为基础表现出的客户需求数据,以爬虫和阿拉丁为基础获取的公共网络数据。而阿里巴巴主要拥有电商交易数据和客户评价的信用数据。在当前的数据挖掘能力水平上,这两种数据更容易分析出商业价值。除此之外,阿里巴巴还通过投资微博和高德掌握了部分社会公众的社交数据。腾讯则拥有用户关系数据以及由此产生的社交网络数据,这些数据可以用于分析客户的生活行为;并从中挖掘出社会、政治、商业、文化、健康等领域的信息,甚至用于预测客户或市场的未来趋势。
阿里巴巴征信系统与征信中心数据源对比
大数据征信提供的产品与服务:征信中心VS互联网金融企业
征信中心对数据进行校验、清洗、匹配、存储和管理后,根据产品设计与研发成果,将数据加工成对应产品。征信中心定位为“金融信用信息基础数据库”,主要服务对象是授信机构,同时也为信用主体和政府机关提供相关服务。根据客户规模和需求的不同,征信中心目前规划了5类产品:数据类产品、工具类产品、解决方案类产品、外包服务类产品、信用主体服务类产品。
征信中心产品体系
数据分析在阿里金融的业务决策中处于核心位置,目标是向公司管理层提供科学、客观的分析结果及建议,并对业务流程提出优化改进方案。具体而言,数据分析主要为微贷、理财、保险和消费等方面的业务决策提供服务,从而为公司的市场营销、信贷审批、授信、支用、监控、催收等各项工作提供支持。
阿里金融的数据分析与决策体系
目前,国内的互联网征信环境正在逐步完善中,P2P、小贷、电商平台都有接入央行征信系统的需求。这是因为,大多数互联网平台没有阿里金融那样大规模的数据,也缺乏持久的数据积累。即使是阿里金融,也发现央行征信数据对其业务发展的不可或缺性。需要明确的是,互联网金融的优势在于数据分析和征信,渠道是外在的表现,内在的核心是数据和信用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25