
数据分析中值得关注的用户指标
最近最常被问到的就是一些用户的统计指标,无论是决策层还是产品部门,所以这篇文章重点说下用户指标的一些内容。
假设你想用尽量简洁有效的数据了解一个网站或产品的用户情况,你会问哪几个用户数据?其实一个聪明的提问者永远不会问网站的累计用户数有多少,甚至不会问网站的UV是多少,因为这些指标都不能从真正意义上去反映网站的价值和发展状况。
举个简单的例子——网秦,累计用户数应该不下千万,但这个数字真的能够体现网秦所具备的价值吗?按照网秦的这种运营推广模式,真正的活跃用户有多少,所占比例如何?3·15之后,流失用户又有多少,这个流失率是不是足以让网秦先前辛辛苦苦培养起来的用户基础毁于一旦?所以网秦的发展前景又如何?其实我们可以使用一些更有说服力的用户指标来反映这些情况。
用户的细分方式
我不建议把用户细分成许许多多的类型,目前为止见过的用户细分的类别也不在少数,罗列出来应该有一大串:当前用户、新老用户、活跃用户、流失用户、留存用户、回访用户、误闯用户、休眠用户、常驻用户、忠诚用户……其实很多的定义或含义是相近的,在分析层面也扮演着类似的指标角色。所以不建议将用户这样混乱无章地分成N个类别,用户的细分关键在于以合理的体系将用户细分成几个类别,并且每个类别都能发挥其在用户分析上的功效,不存在累赘和混淆。
所以这里想介绍下我认为比较合理的用户细分方式。我将用户分成以下几类:当前使用用户、新用户、活跃用户、流失用户、回访用户,下面来简单的解释下。
当前使用用户:即我们平常所说的UV,也就是网站的登录或者使用用户数。用于体现网站的当前运营状况。
新用户:首次访问或者刚刚注册的用户;那么那些不是首次来访的用户就是老用户,于是同时也获得了老用户的统计。用于分析网站的推广效果或者成长空间。
活跃用户数:活跃用户的定义千差万别,一般定义有关键动作或者行为达到某个要求时的用户为活跃用户;每个网站应该根据自身的产品特定定义活跃用户。活跃用户用于分析网站真正掌握了多少有价值用户。
流失用户:网站的活跃用户与流失用户中已经做了定义和介绍,用于分析网站保留用户的能力。我们将那些未流失的用户叫做留存用户,可以通过总使用用户数减去流失用户数计算得到。
回访用户:是指那些之前已经流失,但之后又重新访问你的网站的用户。用于分析网站对挽回流失用户的能力(常常会受到那些很久没有登录的网站给你发的邮件吧,让你回去看看,这些措施就是他们在挽留那些流失用户)。除非近期内执行了一些挽留流失用户的手段,正常情况下回访用户的比例应该是比较低的,否则就是你对流失用户的定义不够准确,应该适当延长定义流失的时间间隔。
所以其实在我们获得某些用户统计指标之后,通过计算同时也获得了诸如老用户、留存用户这些指标。
值得关注的用户指标
文章的开头已经提到过,如果你想了解一个网站或者一个产品的用户情况,请尽量抓住那些最为关键的用户指标。如果是我来问,我只会问3个指标:活跃用户数、新用户比例和用户流失率。
显而易见,活跃用户数直接反映了网站或者产品真正掌握着多少用户,这些用户并不是因为某些广告或者链接误点进来的,而是真正对这个网站或者产品感兴趣,有意向去使用或者持续关注的。活跃用户数越高,网站或者产品当前拥有的价值越高。但这里有一点需要格外注意,那就是活跃用户的定义,活跃用户跟新用户不一样,活跃用户可能催生各种形形色色的定义,之前的文章——用Engagement衡量用户活跃度对于如何定义用户活跃做过介绍,活跃用户的定义也类似,可以有各种方法。宽松的定义可以让活跃用户“变多”,比如只要访问页面数超过2页或者停留时间超过30秒;而严谨的定义可能会导致活跃用户“减少”,比如微博网站定义平均每天发送微博数量超过2条的才是活跃用户。所以,不同的定义影响着活跃用户的数量,当你问到活跃用户时,一定要了解对方是如何定义活跃用户的。我更偏向于严谨的定义,虽然这会让活跃用户“减少”,但严谨的定义让数据显得更加真实,可以说根据这个定义统计到的用户是那些真正在为网站创造价值的用户。
新用户比例反映着网站或产品的推广能力,渠道的铺设和带来的效果。新用户比例不仅是评估市场部门绩效的一个关键指标,同时也是反映网站和产品发展状况的重要指标。
但只看新用户比例是不够的,需要结合着用户流失率一起看。我见过流失率98%的网站,也见过流失率20%左右的产品,流失率会根据产品对用户黏性的不同而显得参差不齐。用户流失率反映了网站或者产品保留用户的能力,即新用户比例反映的是用户“进来”的情况,用户流失率反映的是用户“离开”的情况,结合这两个指标会有下面3类情况,代表了3种不同的产品发展阶段:
新用户比例大于用户流失率:产品处于发展成长阶段;
新用户比例与用户流失率持平:产品处于成熟稳定阶段;
新用户比例低于用户流失率:产品处于下滑衰退阶段。
下面附上一张反映活跃用户数、新用户比例和用户流失率的图表,你能从这张图中看出些什么,假如你是这个网站的CEO,你接下来需要从哪个角度重点着手来改善网站的运营状况?
这篇文章可能没有涉及任何的数据和分析,这里只想理清楚用户的细分和指标,当这套用户的细分和指标体系规范化了以后,能够让用户分析变得游刃有余。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07