京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的商业革命
大数据具有规模大、价值高、交叉复用、全息可见四大特征。特别是,最后两个特征体现了大数据不仅仅有“规模更大的数据”量上的进步,还具有不同于以前数据组织和应用形式的质的飞跃。
数十年来,信息产生、组织和流通方式革命性的变化,其中个人用户第一次成为信息产生和流通的主体。你用QQ和MSN聊天,在电子商务网站的浏览和购物,用信用卡支付,发微博……这一切都将转化为数据存储在世界的各个角落。不论是产生的信息量,可以获取的信息量,还是流通交换的信息量,都一直呈指数增长。
数据规模巨大且持续保持高速增长是大数据的第一个特征。
数据规模爆炸性增长的同时,数据产生的附加价值似乎没有与之同步增长。我们认为,这种滞后情况的症结在于缺乏从海量数据中挖掘价值的高效方法和技术人员。
对于真正的大数据,其价值的增长应该正比于规模的增长,甚至快于规模的增长。
前两个特征主要针对单一数据,下面的两个特征强调的是若干数据之间新的组织和应用形式。我们要找到并实现数据之间一加一远大于二的价值,其间最关键的问题要发挥数据的外部性,譬如国家电网智能电表的数据可以用于估计房屋空置率,淘宝销售数据可以用来判断经济走势……以用户为中心,结合用户在不同系统留下的数据,充分利用个性化的数据挖掘技术,是实现通过数据交叉而产生巨大价值的最可行的途径之一。综上,大数据要求数据能充分发挥其外部性并通过与某些相关数据交叉融合产生远大于简单加和的巨大价值。
个性化
在大数据时代,个性化将颠覆一切传统商业模式,成为未来商业发展的终极方向和新驱动力。随着消费者个体行为数据的爆发性增长,新的商业理论与商业模式不断涌现,无论是精准社会化营销还是基于用户偏好的市场细分,其所指向的趋势是一致的,即为每一个终端消费者提供他们最想要的产品与服务。
在信息量指数性增长的同时,消费者获取、过滤、筛选、分析信息的能力却没有相应提高,这必然导致消费者获取有用信息的时间成本和烦扰成本越来越高。另外,随着时代的变迁,消费者异质性也在不断增大,这种异质性体现在消费者在购物、交友、阅读等生活方方面面的兴趣偏好的不同。
大数据为个性化商业应用提供了充足的养分和可持续发展的沃土,基于交叉融合后的可流转性数据,以及全息可见的消费者个体行为与偏好数据,未来的商业可以精准地根据每一位消费者不同的兴趣与偏好为他们提供专属性的个性化产品和服务。
在以互联网和移动互联网为代表的信息产业,由于用户个体行为数据的可追踪性以及实施个性化的边际成本相对较低,基于个性化的商业应用首先破茧而出。在电商领域,亚马逊率先通过个性化技术为用户进行智能导购,大幅提升用户体验与销售业绩。在不远的未来,个性化技术与应用将全面扩展到人们生活的每一个领域。
随着Google、苹果、腾讯、百度这些互联网巨头企业以及一些第三方数据平台型企业加快数据整合与开放的速度,一定会涌现出以大数据为基础的新商业模式。
2D模式
面向数据的商业模式,简称2D模式,是一种以数据为唯一输入,以向特定受众公开的数据产品为唯一输出的一种商业模式。该模式的核心是数据平台商,它从数据供应商那里搜集数据,提供基本的存储、索引和计算能力,并自行研究开发一系列57数据产品。每一个数据产品在该平台上都以开放API接口的形式存在。
譬如利用新浪微博的数据可以开发一个产品,每次引用该产品,可以看到一个指定账户一个月内互动最频繁的十个账户。如果有了一些种子用户,一个互动游戏开发团队可以利用这个产品找到和已有游戏者互动比较强的用户群,并针对他们推广游戏。平台商还可以同时利用多家数据开发产品,有了这些数据,电子商务公司可以自行开发个性化搜索和推荐服务。
与此同时,应用开发团队可以利用这些API接口优化产品或辅助推广,数据产品开发团队可以引用比较粗糙的数据产品,优化推出更好的数据产品并回馈给数据平台。在这个模式中,部分API的访问会产生一定的费用,这个费用会在平台商、数据提供商和数据产品开发人员之间进行分配。政府和行业扮演规范流程和监管数据的作用。
这个模型通过已有数据产品的开放,应用开发人员和数据产品开发人员可以创造出更有价值的应用和数据产品——前者可以为我们带来数据,后者可以为我们带来收入。
而这个数据平台得以产生巨大价值的前提,又是保证数据的全息可见,也就是随时听从各种需求细节,开发出各种各样满足各样各业的API产品。
综上所述,大数据将带领我们进入一个商业智能高度发达的时代,个性化应用将发挥出数据巨大的商业价值,同时2D商业模式将成为大数据的重要发展方向。未来,基于大数据的信息世界将以你为中心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01