京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的商业革命
大数据具有规模大、价值高、交叉复用、全息可见四大特征。特别是,最后两个特征体现了大数据不仅仅有“规模更大的数据”量上的进步,还具有不同于以前数据组织和应用形式的质的飞跃。
数十年来,信息产生、组织和流通方式革命性的变化,其中个人用户第一次成为信息产生和流通的主体。你用QQ和MSN聊天,在电子商务网站的浏览和购物,用信用卡支付,发微博……这一切都将转化为数据存储在世界的各个角落。不论是产生的信息量,可以获取的信息量,还是流通交换的信息量,都一直呈指数增长。
数据规模巨大且持续保持高速增长是大数据的第一个特征。
数据规模爆炸性增长的同时,数据产生的附加价值似乎没有与之同步增长。我们认为,这种滞后情况的症结在于缺乏从海量数据中挖掘价值的高效方法和技术人员。
对于真正的大数据,其价值的增长应该正比于规模的增长,甚至快于规模的增长。
前两个特征主要针对单一数据,下面的两个特征强调的是若干数据之间新的组织和应用形式。我们要找到并实现数据之间一加一远大于二的价值,其间最关键的问题要发挥数据的外部性,譬如国家电网智能电表的数据可以用于估计房屋空置率,淘宝销售数据可以用来判断经济走势……以用户为中心,结合用户在不同系统留下的数据,充分利用个性化的数据挖掘技术,是实现通过数据交叉而产生巨大价值的最可行的途径之一。综上,大数据要求数据能充分发挥其外部性并通过与某些相关数据交叉融合产生远大于简单加和的巨大价值。
个性化
在大数据时代,个性化将颠覆一切传统商业模式,成为未来商业发展的终极方向和新驱动力。随着消费者个体行为数据的爆发性增长,新的商业理论与商业模式不断涌现,无论是精准社会化营销还是基于用户偏好的市场细分,其所指向的趋势是一致的,即为每一个终端消费者提供他们最想要的产品与服务。
在信息量指数性增长的同时,消费者获取、过滤、筛选、分析信息的能力却没有相应提高,这必然导致消费者获取有用信息的时间成本和烦扰成本越来越高。另外,随着时代的变迁,消费者异质性也在不断增大,这种异质性体现在消费者在购物、交友、阅读等生活方方面面的兴趣偏好的不同。
大数据为个性化商业应用提供了充足的养分和可持续发展的沃土,基于交叉融合后的可流转性数据,以及全息可见的消费者个体行为与偏好数据,未来的商业可以精准地根据每一位消费者不同的兴趣与偏好为他们提供专属性的个性化产品和服务。
在以互联网和移动互联网为代表的信息产业,由于用户个体行为数据的可追踪性以及实施个性化的边际成本相对较低,基于个性化的商业应用首先破茧而出。在电商领域,亚马逊率先通过个性化技术为用户进行智能导购,大幅提升用户体验与销售业绩。在不远的未来,个性化技术与应用将全面扩展到人们生活的每一个领域。
随着Google、苹果、腾讯、百度这些互联网巨头企业以及一些第三方数据平台型企业加快数据整合与开放的速度,一定会涌现出以大数据为基础的新商业模式。
2D模式
面向数据的商业模式,简称2D模式,是一种以数据为唯一输入,以向特定受众公开的数据产品为唯一输出的一种商业模式。该模式的核心是数据平台商,它从数据供应商那里搜集数据,提供基本的存储、索引和计算能力,并自行研究开发一系列57数据产品。每一个数据产品在该平台上都以开放API接口的形式存在。
譬如利用新浪微博的数据可以开发一个产品,每次引用该产品,可以看到一个指定账户一个月内互动最频繁的十个账户。如果有了一些种子用户,一个互动游戏开发团队可以利用这个产品找到和已有游戏者互动比较强的用户群,并针对他们推广游戏。平台商还可以同时利用多家数据开发产品,有了这些数据,电子商务公司可以自行开发个性化搜索和推荐服务。
与此同时,应用开发团队可以利用这些API接口优化产品或辅助推广,数据产品开发团队可以引用比较粗糙的数据产品,优化推出更好的数据产品并回馈给数据平台。在这个模式中,部分API的访问会产生一定的费用,这个费用会在平台商、数据提供商和数据产品开发人员之间进行分配。政府和行业扮演规范流程和监管数据的作用。
这个模型通过已有数据产品的开放,应用开发人员和数据产品开发人员可以创造出更有价值的应用和数据产品——前者可以为我们带来数据,后者可以为我们带来收入。
而这个数据平台得以产生巨大价值的前提,又是保证数据的全息可见,也就是随时听从各种需求细节,开发出各种各样满足各样各业的API产品。
综上所述,大数据将带领我们进入一个商业智能高度发达的时代,个性化应用将发挥出数据巨大的商业价值,同时2D商业模式将成为大数据的重要发展方向。未来,基于大数据的信息世界将以你为中心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22