
大数据的概念炒了那么久,如何利用用户在线下消费积累的大数据创造消费场景
从淘宝的 “花呗” 到京东的 “京东白条”,再到芝麻科技旗下针对线下零售门店推出的实时导购助手 “知了”、结合了线下商业消费数据及线上消费轨迹的 “观星”,似乎大数据还被禁锢在互联网企业的圈子内。互联网大数据在于掌握了许多传统数据方及征信方拿不到的数据,例如在国外,已经有公司在分析用户的 Facebook、LinkedIn 和 Twitter 账户来评估他们的信用情况。包括美国的企业征信巨头邓白氏近年的战略主要有二:增强数据挖掘能力,兼并掌握技术的企业;与互联网数据掌控方战略合作,共享数据。
今年6月,浦发银行信用卡中心宣布与腾讯征信开展合作,借助互联网大数据对客户消费行为和诚信记录作出尽可能全面的综合分析,开展基于互联网大数据的第三方征信服务,这在传统金融机构中算得上是第一家。
那么,除了畅想在未来的某一天,企业可以结合第三方数据、互联网大数据做更多征信业务之外,积累了千万级用户数十亿条消费信息数据的传统银行,该如何利用自己原有的业务数据积累做到实际上的线下营销落地?毕竟,线下的消费数据沉淀时间更久,关联着的信用卡账户甚至还包括许多个人资产证明、工资证明等材料,跟互联网企业相比,省去了线下征信调查的步骤。
浦发信用卡中心的首次尝试的切入点在信用卡,并选择了天玑科技的大数据团队作为解决方案提供商,而在天玑科技背后,更有智树科技等科技创新公司提供大数据技术分析的支撑。除了上述线下数据沉淀的优势之外,选择此次合作,是因为信用卡中心利用大数据做业务落地能挖掘用户的增量消费需求吗?
对于这个提问,天玑科技的大数据团队负责人梁晟认为,信用卡的透支功能、用户消费特征都需要大数据做把控,并做实时营销方案,“信用卡中心是最关注用户行为、消费习惯,希望用户多刷卡消费,获得更多的流量。主要的目的:第一,获客,拿下增量的客户群体;第二,争取让已有的客户增加消费。浦发银行信用卡的客户群主要是华东区的白领,都是收入相对比较高的人群”,这其中的数据含金量很高。
梁晟毕业于复旦大学计算机系,硕士学位,多年来从事金融、运营商的应用架构和咨询,对大数据的实践落地有着许多独到见解,并同时带领团队选择了银行业这个数据价值密度较高的行业,以信用卡业务作为切入点,在促进信用卡业务获客、营收甚至风控等方面,迈出了实践的一大步。在他看来,信用卡的三大痛点及背后根由,主要分为实时营销、数据关联、银行缺乏落地实践等,归纳总结如下:
第一,信用卡交易的数据量特别大,用户量千万级,用户历史信息和记录数十亿,年交易量超越了十亿级。而与之对应的,核心系统还是基于原有的成熟架构的系统,主要针对 OLTP 的在线事务处理。原有的核心系统运行稳定,但不适合做在线数据分析的处理。
通常用户刷完卡之后,核心系统需要对用户进行复杂的状态计算,才能作出这笔交易成功、或者不成功的判断,这个过程在系统中必须确保整个事务的完整性。整个计算过程数据处理量是多少?速度怎样?梁晟回答,“大数据服务平台现在做到以单节点数万笔 / 秒规则匹配。分布式架构是计算集群,原则上可以线性扩展,以时间衡量的话,处理速度为微秒级”。
在判定这笔交易成功后,系统先进行虚拟账的记录,可能到当日统一清算时,再记录会计账。整个事务处理的复杂性的要求导致核心系统腾不出时间做实时营销,并且使用的还是传统的技术架构以及数据处理方法。一旦在任何环节,会计账或者虚拟账出现偏差,其错误原因的排查往往要耗费大量精力。为了保证数据的一致性,银行信用卡业务往往相对弱化性能,更难以进行更多的实时营销支持。
第二,随着日积月累的数据沉淀,核心系统和各类业务应用系统的数据也越来越杂乱,“噪音” 越来越多。数据处理系统多,可能每个系统都有分析、数据挖掘的功能,但是数据必须形成关联圈。需要有一个大数据的平台独立在信用卡核心系统之外,把数据进行清洗,更关注用户、做用户画像,更主动甚至自动进行实时性的营销和推广,且保证逐步增长的精准性。
第三,不能做到对用户的实时营销。原本的核心系统在包括长事务的多个环节,需要对许多信息进行判定、核实(比如额度是否透支、上期还款是否已到位)才能确保交易成功,没法同时完成实时营销。如果在核心系统之外另外开发一套数据系统,导入新流入的用户交易大数据,那么就可以在核心系统之外做到数据的实时更新,既不影响核心系统的事务处理,又可以据实时更新的数据,并以这些数据做在线实时分析,触发事件式精准营销。
甚至在未来,是否会有可能对用户信用情况做评估上的调整,酌情降低或者提高透支额度?对于这个问题,梁晟的回答很坚定,“银行卡业务最核心的就是信贷,并高度强调风控。分布式计算框架能整合多方数据,使海量数据在线分析成为可能,与信用评估的结合是必然的”。
在上述第三点实时营销方面,大数据的应用也分为细分的几种应用场景:
浦发信用卡市场合作方每年有上万家商户。例如跟星巴克的有活动合约,刷信用卡,满足一系列的规则条件可以 88 折,在某一些节假日可以买一送一,或者当日信用卡总消费金融满 1000 元就可以买一送一,这些活动需要有一套完整的活动规则引擎去进行快速匹配,并发计算量非常大,还涉及到一些事务性处理,引入大数据的计算架构使得这些在线分析成为可能。
用户信息更新需要较长的周期,例如积分,例如:刷卡满了一定金额可以升级钻石会员,但这样的周期往往太长,难以满足日益提升的用户服务质量要求,大数据服务平台建立了用户分析的模型,批量处理用户积分,以及 “白领”、“吃货”、“土豪” 等用户画像标签,也,可以做到以周为单位更新数据。现在用户标签是静态标签,近期还会扩展为动态标签。
针对以上所述痛点,浦发银行信用卡中心和天玑科技的联袂主要从以下几部战略作为切入点:
第一,结合卡类业务实时营销的系统,浦发银行信用卡中心专门成立了数据服务部,由天玑科技大数据团队提供大数据服务平台,包含了实时营销功能,为将来所有的浦发信用卡中心业务部门和外部机构提供数据服务。数据必须要关联才有价值,金融的数据是价值密度非常高、也最真实。回到前面数据量大、数据处理系统庞杂的痛点,数据服务部目前是与外部征信、政府、公安、电商等进行大数据对接的一个核心平台,力图在未来做到数据互联,形成本地完整的大数据小生态圈。
海量数据的存储和分析处理、升级是一方面,另外一方面就是交易数据也同时以流式计算的方式进入大数据服务平台,实时营销模块跟核心系统是分离的,大数据服务平台与核心系统存在交互,为其它业务应用提供数据服务,通过 web-service 接口来大数据服务平台的数据。
第二,作为数据服务的核心系统之一,必须要有明确的定位,将来业务拓展、落地的重任由数据服务部提供数据支持。结合以上大数据实时营销的场景,相比于线上 DSP 广告大多以具体商品作为用户的兴趣标签,信用卡本身掌握更多的线下用户数据、用户刷卡地点。此外,天玑科技方提供的大数据服务目前还会结合消费数量、消费金额量等活动规则,实时进行规则引擎进行匹配,进行流式计算,完全的分布式高效处理数据。
未来业务拓展方面,还会结合商圈和 LBS 进行更精准的推荐和营销,而这些业务要取得一定的外部数据源,大数据服务平台为将来的业务营销方案提供了基础的应用计算框架。假设,未来跟大众点评等有合作的话,就可以获得更多实时的用户、浦发信用卡合作商户的地理位置信息,从数据库里的全国几十万种活动中,挑选出 1-3 个最匹配的活动推送给单个用户。
许多银行都会利用大数据技术进行用户画像,或者历史数据查询,梁晟则认为,此次浦发信用卡中心是国内传统金融圈内第一家做到大数据实时营销的机构,“天玑科技的大数据团队为浦发信用卡中心的市场部、电销部、客服中心和移动金融部等部门的提供实时数据服务,可说是初步综合形成大数据的生态圈。在传统银行向互联网 + 大数据尝试的方向上踏出了坚实的一步”。未来,大数据应用在传统银行业又会创造怎样的成绩?
的确,许多大数据的应用场景还没有真正做到实际落地,大多传统银行机构还在观望,小试牛刀的互联网企业似乎停驻在支付宝的 “花呗” 等线上层面的尝试。数据来源则更显得缺失,大数据更多的是通过线上数据共享获得,较为经典的应用实例就是淘宝的运费险了。运费险做过一套大数据智慧应用的解决方案,退货发生的概率,跟买家、卖家的习惯、商品的品种、价值、促销活动等都有一定相关度。运费险采用了第三方提供的解决方案,应用数据挖掘的方法,建立退货发生的概率模型植入系统,就可以在每一笔交易发生的时候,给出不同的保险费率,使保险费的收取,使之与退货发生的概率相匹配。问题是,真正将线下消费的数据沉淀付诸大数据应用的例子实在太少,国外的案例是 Target,而在国内,天玑科技大数据团队又将交上来怎样的一份答卷?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01