京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与情感分析:言多必得与言多必失
SmogFarm从事的是基于大数据的情绪分析,衡量、跟踪、聚合数百万人的情绪,然后做出全球第一份衡量群众心理的定量指标—地球脉搏。为什么要这么做?因为数据就是未来,情感是笔大买卖,选举、调查结果、流行新闻故事乃至于股市都会受到 “群众” 情绪的影响。
言多必得
相比之下,KredStreet则找到了另一个似乎更容易变现的垂直商业模式并已开始进行不公开测试:社会化股票交易员排名(The Social Stock Trader Rankings)。The Social Stock Trader Rankings 对 StockTwits 的数据进行情绪分析,对 Twitter 数据流进行采样,以便确定交易员总体看涨还是看跌。它还会将当前的股市表现与交易员过去的涨跌判断进行比对,进而依据交易员的准确率对其进行评分和排名。
这个排名系统的创意的确好。因为这里一切都是靠实力和结果说话,无名之辈只要预测准确率高也能把夸夸其谈的知名人士压倒。实际上,这一思路完全可以推广到许多领域,比方说倡导声音有力则不需名气的舆论网络初创企业 State的做法。说实话,这套东西有时候的确比文凭和砖家管用。
当然 SmogFarm/KredStreet 之流所从事的情绪分析,以及Summly从事的自然语言处理,还有Palantir从事的数据挖掘等尚处在早期阶段,还很不成熟。但请你设想一下 5年 之后。如果他们的大数据、高能量探照灯打在Facebook timeline这样的东西上,会有多少东西被他们洞悉?
几年前,EFF(电子前沿基金会)发现,哪怕是像浏览器设置这么简单的东西都会让你的匿名性下降到无法想象的地步。上一周,一项新研究又发现人的移动轨迹具有高度的独特性,按照这份研究的说法,从各人匿名提供的手机方位数据中只需抽取四个时空点就能识别出该用户,识别率高达 95%。好的软件能够从这些看似稀疏、空白的数据中挖掘出甚多宝物。
言多必失
随着语言和图像处理软件的不断进化,一旦被运用到 Facebook timeline 这样的东西上,就有可能产生出你意想不到的效果。你所说的话、发出去的图、玩过的游戏等,都会逐渐勾勒出你本人的一幅准确得令人恐怖的肖像,那些东西可能是你从来都不曾想公开的隐私。
更糟的是这件事有可能容易得出奇。老板可能根本就不需要通读你的 Facebook timeline,只需将档案分析软件往你的头像一点,半分钟之后,你的工作习惯、神经衰弱、人生受挫、情绪不稳、对老板的态度等悉数就被推断出来—你的照片、评论、喜欢、顶等,这些信息从个体上看虽然毫无意义,但是拼凑起来就能形成你的拼图。
这是一笔大买卖。前不久,IBM 开发的新型安全工具就能够运用大数据来识别安全威胁和不满员工。Facebook 之流显然也指望此类大数据应用为其定向广告挖掘出大金矿。
但是这会受到用户的反制。我们可以设想,一旦这样的工具成熟起来,大家在网上的表现一定不会再像以前那样直率,会变得更加小心翼翼。或者甚至只看不说。这样的网络到头来也许只有两种结果:死气沉沉、人人自危,或者只谈风月、口是心非。
扎克伯格定律认为互联网用户共享的信息每年都会翻番。但是一旦大家都意识到言多必失时这条规律还能不能延续?
工具无所谓好坏,言多必得还是言多必失,要看用者做不做恶,对于用户和商家来说结果只有两个:双赢或双输,善用则情感成为好买卖,滥用则数据没有未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16