
大数据正在改变每一个行业
亚马逊首席技术官Werner Vogels表示:“你拥有的数据永远不够多,数据越多对于企业的好处就越多。”
亚马逊绝对算是大数据领域的先驱,但事实上,所有行业都正在享受收集和分析数据带来的优势。
制造业、医疗保健业、农业、零售业等,每个活动收集的数据(无论是看似多么微不足道的数据)都意味着更多的机会来调整流程和运营,以尽可能地提高工作效率。
不同的行业在以不同的方式来响应大数据趋势。零售业和销售行业将会依赖于尽可能多地收集关于其客户生活的信息,而在制造业,重点则是精简运营。
设备校准设置可以被记录和调整,而受监控的产品存储环境则可以确定如何确保最小的损坏和浪费。
对于全球性大型企业而言,这可能意味着收集和分析来自世界各地的工厂的数据,从而对其中的差异进行研究。
例如,去年制药巨头公司Merck使用数据分析大幅减少了废物量,这些废物主要是由于制造环境及条件的差异所造成。
这个数据分析耗时三个月,对来自550万疫苗批次的生产数据进行了150亿次计算。这让他们可以发现发酵过程中的最佳条件,在FDA已经批准了对生产过程的这种改变后,这帮助他们大大提高了产量。
在汽车行业,汽车研究中心在最近的报告中将通过先进的IT解决方案和大数据带来的改进成为“创新引擎”。
该报告强调了不断增长的汽车和行业复杂性是制造商面临的最大挑战,并指出了通过技术和数据分析解决这些挑战的方法。
制造过程中每台机器的效率可以记录下来,企业就可以了解运行情况,并在需要的地方做出改进。
而在农业,数据分析正在帮助该行业解决提高世界粮食60%的挑战,预言家称,由于不断增长的人口,到2050年我们将需要这么多的粮食。
John Deere将传感器部署在其拖拉机和农业机械,让人们可以在myjohndeere.com和Farmsight服务读取相关数据。这些可以帮助农民创造庄稼生长的最佳条件,同时让John Deere预测对备件的需求。
在产品制造(或生成)后,需要被销售和分销。大型零售商收集的关于客户的PB级数据可以让他们知道哪些人想要购买这些产品,这些客户在哪里。
亚马逊利用其S3系统来追踪分散在世界各地的几十个仓库和配送中心的库存情况。操作工可以实时追踪来查看什么货物在哪里,它应该被送去哪里。
大型供应商进行的这种大的改进将会影响企业供应链,亚马逊允许其他企业授权这种技术来帮助其运作。随着时间的推移,中小型企业将会发现他们也可以使用行业领导者正在使用的工具。
通过销售,零售商可以使用数据来确定库存应该显示在哪里,哪些商店某种特定产品卖得最好,并追踪客户的情况。会员卡并不是新鲜事,但可以帮助对客户的习惯进行分析,同时能够帮助分析客户的购买趋势。这种数据分析让亚马逊相信他们很快就能够预测客户将会购买什么,以至于在客户下单之前就准备好足够的库存来发货。换句话说,他们将对他们的系统有足够的信心,他们相信这种先发制人的订单所带来的利润将会超过来回邮寄的成本。
物联网将会带来更多改进,随着设备学会互相沟通和合作,给世界带来更多连接。本周,思科宣布为致力于提高虚拟和物理世界之间整合的初创公司提供1.5亿美元的基金。
对于企业而言,让其生产、库存控制、配送和安全系统完全连接,并让它们互相通信,将意味着更高的效率和更少的浪费。
GE将这种数据和机器的融合成为“工业互联网”,并声称这可以帮助全球行业节省1500亿英镑。
各行各业都正在享受大数据分析带来的好处,我们相信,在可预见的未来,寻找收集、记录和分析数据的创新方法将是企业的重要工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01