京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据正在改变每一个行业
亚马逊首席技术官Werner Vogels表示:“你拥有的数据永远不够多,数据越多对于企业的好处就越多。”
亚马逊绝对算是大数据领域的先驱,但事实上,所有行业都正在享受收集和分析数据带来的优势。
制造业、医疗保健业、农业、零售业等,每个活动收集的数据(无论是看似多么微不足道的数据)都意味着更多的机会来调整流程和运营,以尽可能地提高工作效率。
不同的行业在以不同的方式来响应大数据趋势。零售业和销售行业将会依赖于尽可能多地收集关于其客户生活的信息,而在制造业,重点则是精简运营。
设备校准设置可以被记录和调整,而受监控的产品存储环境则可以确定如何确保最小的损坏和浪费。
对于全球性大型企业而言,这可能意味着收集和分析来自世界各地的工厂的数据,从而对其中的差异进行研究。
例如,去年制药巨头公司Merck使用数据分析大幅减少了废物量,这些废物主要是由于制造环境及条件的差异所造成。
这个数据分析耗时三个月,对来自550万疫苗批次的生产数据进行了150亿次计算。这让他们可以发现发酵过程中的最佳条件,在FDA已经批准了对生产过程的这种改变后,这帮助他们大大提高了产量。
在汽车行业,汽车研究中心在最近的报告中将通过先进的IT解决方案和大数据带来的改进成为“创新引擎”。
该报告强调了不断增长的汽车和行业复杂性是制造商面临的最大挑战,并指出了通过技术和数据分析解决这些挑战的方法。
制造过程中每台机器的效率可以记录下来,企业就可以了解运行情况,并在需要的地方做出改进。
而在农业,数据分析正在帮助该行业解决提高世界粮食60%的挑战,预言家称,由于不断增长的人口,到2050年我们将需要这么多的粮食。
John Deere将传感器部署在其拖拉机和农业机械,让人们可以在myjohndeere.com和Farmsight服务读取相关数据。这些可以帮助农民创造庄稼生长的最佳条件,同时让John Deere预测对备件的需求。
在产品制造(或生成)后,需要被销售和分销。大型零售商收集的关于客户的PB级数据可以让他们知道哪些人想要购买这些产品,这些客户在哪里。
亚马逊利用其S3系统来追踪分散在世界各地的几十个仓库和配送中心的库存情况。操作工可以实时追踪来查看什么货物在哪里,它应该被送去哪里。
大型供应商进行的这种大的改进将会影响企业供应链,亚马逊允许其他企业授权这种技术来帮助其运作。随着时间的推移,中小型企业将会发现他们也可以使用行业领导者正在使用的工具。
通过销售,零售商可以使用数据来确定库存应该显示在哪里,哪些商店某种特定产品卖得最好,并追踪客户的情况。会员卡并不是新鲜事,但可以帮助对客户的习惯进行分析,同时能够帮助分析客户的购买趋势。这种数据分析让亚马逊相信他们很快就能够预测客户将会购买什么,以至于在客户下单之前就准备好足够的库存来发货。换句话说,他们将对他们的系统有足够的信心,他们相信这种先发制人的订单所带来的利润将会超过来回邮寄的成本。
物联网将会带来更多改进,随着设备学会互相沟通和合作,给世界带来更多连接。本周,思科宣布为致力于提高虚拟和物理世界之间整合的初创公司提供1.5亿美元的基金。
对于企业而言,让其生产、库存控制、配送和安全系统完全连接,并让它们互相通信,将意味着更高的效率和更少的浪费。
GE将这种数据和机器的融合成为“工业互联网”,并声称这可以帮助全球行业节省1500亿英镑。
各行各业都正在享受大数据分析带来的好处,我们相信,在可预见的未来,寻找收集、记录和分析数据的创新方法将是企业的重要工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16