
5种方法教创业公司如何利用大数据形成独特竞争优势
无论是大公司还是创业公司,数据都可以帮助他们改善产品,让他们做出更明智的选择;数据也可以驱动公司在感知和现实中变得更有价值。
Teles Properties 的 Sharran Srivatsaa 最近告诉我,他们公司是如何利用数据智能作为他们的房地产经纪人模式。通过挖掘、发现和可视化模式的超本地微观市场数据,Teles 可以准确地预测客户可能接受的价格和属性。该公司给其经纪人一个独特的市场竞争优势,并在最短的时间里以最高的价格在房屋竞争中胜出。
提倡共享制度的Uber,也是利用大数据改变了整个行业的格局。这个应用程序依赖于数据分析决定那个地区是繁忙的,并激活 “增兵定价” 来让更多司机前往那个区域。Uber 利用数据作为竞争优势和产品。在今年早些时候,Uber 同意出售其客户出行模式的数据,结合数据作为收入来源的公司队伍不断壮大。
甚至是老牌公司GE当谈到大数据的时候也会展示他们的独特之处。GE 的 Predix 是一款旨在整合通用传感器从而创造一个真正的物联网的软件,它能够检测和维护用户的需求,预测鼓掌,并将性能数据发送至研究室让其以更快的速度改进产品。
该公司声称他们寄托于工业数据时代,其市盈率持续攀升。感知价值的企业家也可以通过数据获得他们想要的。
这里有一些方法,可以帮助创业这构建一个数据驱动的公司:
1、确定你的数据客户
数据客户不一定是创业公司的客户。Uber 的数据客户和使用它服务的广大市民不同。视频游戏发行商 Zynga 实际上更多,从每个游戏的互动数据和销售分析以确定哪些用户玩相似的游戏,那么就将他们归为一个群体。
2、找出用户所需的数据
哪些见解会对用户的日常行为有直接的影响,以及如何将这些信息收集?它是否可以成为结构化,是否需要立即分析这些信息,或者是否需要让内容变得更加清晰?数据是没有任何背景也没有上下文可依靠,因此创业者必须把它变成对客户有意义的内容。
3、建立或购买数据
一旦数据需求已经确定,接下来就需要建立基础设施来收集数据或者支付第三方工具,利用它提炼出数据。数据生态系统可以利用成本比较低的 Amazon Web Services,但是数据科学家依旧必须检查所有提炼出来的数字内容。
我听说过很多关于启动一个大数据项目的复杂性和成本的抗议。人力成本比建立和保持一个独特的服务器成本要高很多。同时,人们可以在很容易来送输送数据的云端服务器订购服务需求。我没有 Amazon 的股份,但如果它建立了一个基础数据让用户买书变得很容易的话,我相信对每个人来说都是有意义的。
4、强调视觉
数据是科学的,但它的可视化是一门艺术。为了使数据具有可操作性,在某种程度以人类接受和具有说服力的方式呈现出来。FiveThirtyEight 的创始人 Nate Silver 是数据可视化的先驱。FiveThirtyEight 利用统计模型预测了 2008年 总统选举的结果,并证明了数据可视化的情感诉求。
5、自动化产品
如果收集到的数据本身就是一个产品的话,你可以利用自动化收集来输入数据,利用交付的方式来输出数据。记住,一个 API 作为软件的 USB 接口,可以用来传输数据。如果代码被设置成端口数据的预测模型话,可以利用自动化产品执行模型的可视化,并让它成为你的一个摇钱树。
到 2018年,大数据市场的价值将会达到 415 亿。专门从事分析的创业公司已经抢占了数百万美元的资金市场。即使创业公司对将数据转化成产品不感兴趣,他们也需要利用这些数据作为自己独特的竞争优势。如果他们不这样做,其竞争对手会跟随显示出来的信息猜测他们的下一步动作,这样他们就会失去竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02