京公网安备 11010802034615号
经营许可证编号:京B2-20210330
5种方法教创业公司如何利用大数据形成独特竞争优势
无论是大公司还是创业公司,数据都可以帮助他们改善产品,让他们做出更明智的选择;数据也可以驱动公司在感知和现实中变得更有价值。
Teles Properties 的 Sharran Srivatsaa 最近告诉我,他们公司是如何利用数据智能作为他们的房地产经纪人模式。通过挖掘、发现和可视化模式的超本地微观市场数据,Teles 可以准确地预测客户可能接受的价格和属性。该公司给其经纪人一个独特的市场竞争优势,并在最短的时间里以最高的价格在房屋竞争中胜出。
提倡共享制度的Uber,也是利用大数据改变了整个行业的格局。这个应用程序依赖于数据分析决定那个地区是繁忙的,并激活 “增兵定价” 来让更多司机前往那个区域。Uber 利用数据作为竞争优势和产品。在今年早些时候,Uber 同意出售其客户出行模式的数据,结合数据作为收入来源的公司队伍不断壮大。
甚至是老牌公司GE当谈到大数据的时候也会展示他们的独特之处。GE 的 Predix 是一款旨在整合通用传感器从而创造一个真正的物联网的软件,它能够检测和维护用户的需求,预测鼓掌,并将性能数据发送至研究室让其以更快的速度改进产品。
该公司声称他们寄托于工业数据时代,其市盈率持续攀升。感知价值的企业家也可以通过数据获得他们想要的。
这里有一些方法,可以帮助创业这构建一个数据驱动的公司:
1、确定你的数据客户
数据客户不一定是创业公司的客户。Uber 的数据客户和使用它服务的广大市民不同。视频游戏发行商 Zynga 实际上更多,从每个游戏的互动数据和销售分析以确定哪些用户玩相似的游戏,那么就将他们归为一个群体。
2、找出用户所需的数据
哪些见解会对用户的日常行为有直接的影响,以及如何将这些信息收集?它是否可以成为结构化,是否需要立即分析这些信息,或者是否需要让内容变得更加清晰?数据是没有任何背景也没有上下文可依靠,因此创业者必须把它变成对客户有意义的内容。
3、建立或购买数据
一旦数据需求已经确定,接下来就需要建立基础设施来收集数据或者支付第三方工具,利用它提炼出数据。数据生态系统可以利用成本比较低的 Amazon Web Services,但是数据科学家依旧必须检查所有提炼出来的数字内容。
我听说过很多关于启动一个大数据项目的复杂性和成本的抗议。人力成本比建立和保持一个独特的服务器成本要高很多。同时,人们可以在很容易来送输送数据的云端服务器订购服务需求。我没有 Amazon 的股份,但如果它建立了一个基础数据让用户买书变得很容易的话,我相信对每个人来说都是有意义的。
4、强调视觉
数据是科学的,但它的可视化是一门艺术。为了使数据具有可操作性,在某种程度以人类接受和具有说服力的方式呈现出来。FiveThirtyEight 的创始人 Nate Silver 是数据可视化的先驱。FiveThirtyEight 利用统计模型预测了 2008年 总统选举的结果,并证明了数据可视化的情感诉求。
5、自动化产品
如果收集到的数据本身就是一个产品的话,你可以利用自动化收集来输入数据,利用交付的方式来输出数据。记住,一个 API 作为软件的 USB 接口,可以用来传输数据。如果代码被设置成端口数据的预测模型话,可以利用自动化产品执行模型的可视化,并让它成为你的一个摇钱树。
到 2018年,大数据市场的价值将会达到 415 亿。专门从事分析的创业公司已经抢占了数百万美元的资金市场。即使创业公司对将数据转化成产品不感兴趣,他们也需要利用这些数据作为自己独特的竞争优势。如果他们不这样做,其竞争对手会跟随显示出来的信息猜测他们的下一步动作,这样他们就会失去竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20